图书介绍

概率计量逻辑及其应用2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

概率计量逻辑及其应用
  • 周红军著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030445285
  • 出版时间:2015
  • 标注页数:368页
  • 文件大小:52MB
  • 文件页数:385页
  • 主题词:概率逻辑

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

概率计量逻辑及其应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 多值命题逻辑简介1

1.1命题逻辑系统及其完备性1

1.1.1命题逻辑系统1

1.1.2语构理论2

1.1.3语义理论2

1.1.4逻辑系统的完备性3

1.2若干常用的命题逻辑系统4

1.2.1二值命题逻辑系统L4

1.2.2多值Lukasiewicz命题逻辑系统L与Ln6

1.2.3模糊命题逻辑系统G与П8

1.2.4多值R0-型命题逻辑系统?*与?*n9

1.2.5模糊命题逻辑系统NMG11

1.2.6模糊命题逻辑系统LП1/212

第2章 概率逻辑与计量逻辑14

2.1概率逻辑中公式的概率14

2.2二值命题逻辑中公式的真度及随机真度16

2.3多值命题逻辑中的计量逻辑理论20

2.4关于相似度和伪距离的一些结论的更正22

第3章 公式的概率真度理论26

3.1二值命题逻辑中公式的概率真度26

3.1.1公式的概率真度及其性质27

3.1.2逻辑闭理论与拓扑闭集37

3.1.3概率真度函数的公理化定义及其表示定理43

3.1.4逻辑度量空间49

3.2多值命题逻辑中公式的概率真度53

3.2.1 n-值命题逻辑中公式的概率真度53

3.2.2 n-值命题逻辑系统中公式概率真度的积分表示60

3.2.3 [0,1]-值命题逻辑系统中公式的积分真度及极限定理63

3.2.4系统Ln中的逻辑闭理论与赋值空间中的拓扑闭集65

3.2.5系统Ln和L中概率真度函数的公理化定义及其表示定理69

3.3定义公式真度的其他方法75

3.3.1常用的模糊测度76

3.3.2逻辑公式的几种测度真度80

3.4 [0,1]-值Lukasiewicz命题逻辑中公式的Choquet积分真度84

第4章 概率计量逻辑推理系统91

4.1概率计量逻辑推理系统PQ(Ln,L)91

4.1.1语构理论91

4.1.2语义理论96

4.1.3完备性定理98

4.1.4 Pavelka型扩张99

4.2概率计量逻辑线性推理系统PQ(L2,LП 1/2)100

4.2.1语构理论101

4.2.2语义理论104

4.2.3完备性定理105

第5章 逻辑理论的相容度及程度化推理方法108

5.1研究背景109

5.2一个新的极指标112

5.2.1极指标112

5.2.2逻辑理论的η-相容度及比较120

5.3逻辑理论的语义蕴涵度与程度化推理121

5.3.1理论的语义蕴涵度121

5.3.2理论的相容度127

5.3.3程度化推理方法128

5.4模糊推理的逻辑基础133

第6章 极大相容逻辑理论的结构及其拓扑刻画137

6.1二值命题逻辑L2中极大相容理论的结构及其拓扑刻画138

6.1.1 L2中极大相容理论的性质及结构138

6.1.2 L2中极大相容理论结构刻画的归纳证法142

6.1.3 L2中极大相容理论的拓扑刻画144

6.2形式系统?*中极大相容理论的结构及其拓扑刻画145

6.2.1 ?*中极大相容理论的性质及结构145

6.2.2 ?*中极大相容理论结构刻画的归纳证法154

6.2.3 ?*中极大相容理论的拓扑刻画156

6.2.4 ?*中的Lukasiewicz理论与Boole理论161

6.3系统NMG中极大相容理论的结构及其拓扑刻画166

6.3.1 NMG中极大相容理论的结构刻画166

6.3.2 NMG中的Gode1理论172

6.4 Lukasiewicz模糊命题逻辑L中极大相容理论的刻画174

6.4.1 L中极大相容理论的性质174

6.4.2 L中极大相容理论之集上的模糊拓扑178

6.4.3 L中极大相容理论之集上的分明拓扑179

6.5 Godel和乘积模糊命题逻辑中极大相容理论的刻画182

第7章 R0-代数中的三值Stone拓扑表示定理187

7.1 R0-代数及其基本性质187

7.2 R0-代数中的极大滤子及其拓扑性质191

7.2.1极大滤子的结构性质191

7.2.2极大滤子之集上的Stone拓扑与三值Stone拓扑201

7.3 R0-代数中的三值Stone拓扑表示定理205

7.3.1 Boole-skeleton与MV-skeleton206

7.3.2三值Stone拓扑表示定理210

7.4 R0-代数中的Boole-滤子与MV-滤子213

7.4.1 Boole-滤子213

7.4.2 MV-滤子218

7.4.3 MV-滤子与Stone空间中的拓扑闭集222

7.5 R0-代数中的三值Stone对偶223

第8章 逻辑代数上的态理论230

8.1剩余格230

8.1.1几类重要的剩余格230

8.1.2滤子理论246

8.2逻辑代数上的态算子252

8.2.1 Bosbach态与Riecan态252

8.2.2赋值态261

8.2.3 Bosbacb态与Riecan态的存在性263

8.2.4半可分剩余格上的Bosbach态与Riecan态266

8.3 MV-代数关于态算子的Cauchy度量完备化267

8.3.1态算子诱导的度量268

8.3.2 Cauchy度量完备272

第9章 逻辑代数上的内部态理论276

9.1 MV-代数上的内部态理论276

9.1.1 MV-代数上的内部态算子276

9.1.2次直不可约SMV-代数278

9.1.3 SMV-代数与MV-代数上的态算子280

9.1.4概率模糊逻辑281

9.2 BL-代数上的内部态理论282

9.2.1 BL-代数上的内部态算子283

9.2.2 SBL-代数中的σ-滤子288

9.2.3 SBL-代数上的态算子291

第10章 剩余格上的广义态理论292

10.1广义态算子292

10.1.1广义Bosbach态292

10.1.2保序Ⅰ-型态的核302

10.1.3广义Riecan态306

10.2剩余格关于保序Ⅰ-型态的Cauchy相似完备化308

10.2.1相似收敛308

10.2.2保序Ⅰ-型态的连续性311

10.2.3 s-Cauchy相似完备314

10.3基于相对否定的广义态理论321

10.3.1相对否定321

10.3.2相对广义态算子331

10.4基于核算子的广义态理论338

10.4.1核算子338

10.4.2基于核算子的广义态算子345

10.5广义态算子的逻辑基础初探348

参考文献350

索引363

热门推荐