图书介绍

Lectures on Differential and Integral Equations2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

Lectures on Differential and Integral Equations
  • 出版社: Inc.
  • ISBN:
  • 出版时间:1960
  • 标注页数:220页
  • 文件大小:52MB
  • 文件页数:230页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Lectures on Differential and Integral EquationsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS1

1.Successive Approximations1

1.Existence and uniqueness of the solution of the ordinary differential equation of the first order1

2.Remark on approximate solutions6

3.Integration constants8

4.Solution by power series expansion10

5.Differential equations containing parameters.Perturbation theory14

6.Existence and uniqueness of the solution of a system of differential equations17

2.Linear Differential Equations of the nth Order21

7.Singular points for linear differential equations21

8.Fundamental system of solutions23

9.Wronskian.Liouville's formula27

10.Lagrange's method of variation of constants and D'Alembert's method of reduction of order29

11.Linear differential equations with constant coefficients31

3.Second Order Differential Equations of the Fuchs Type37

12.Regular singular points.Fuchs'theorem37

13.Gauss differential equations45

14.Legendre differential equations48

15.Bessel differential equations51

Chapter 2.THE BOUNDARY VALUE PROBLEM FOR LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER61

1.Boundary Value Problem61

16.Boundary value problem of the Sturm-Liouville type61

17.Green's function.Reduction to integral equations64

18.Periodic solutions.Generalized Green's function68

2.Hilbert-Schmidt Theory of Integral Equations with Symmetric Kernels76

19.The Ascoli-Arzelà theorem76

20.Existence proof for the eigenvalues80

21.The Bessel inequality.The Hilbert-Schmidt expansion theorem83

22.Approximations of eigenvalues.Rayleigh's principle and the Kryloff-Weinstein theorem91

23.Inhomogeneous integral equations96

24.Hermite,Laguerre and Legendre polynomials100

3.Asymptotic Expression of Eigenvalues and Eigenfunctions,Liouville's Method110

25.The Liouville transformation110

26.Asymptotic expressions of eigenvalues and eigenfunctions112

Chapter 3.FREDHOLM INTEGRAL EQUATIONS115

1.Fredholm Alternative Theorem115

27.The case when ∫ba∫ba|K(s,t)|2 ds dt<1115

28.The general case118

29.Fredholm's alternative theorem125

2.The Schmidt Expansion Theorem and the Mercer Expansion Theorem127

30.Operator-theoretical notations127

31.The Schmidt expansion theorem128

32.Application to Fredholm integral equation of the first kind131

33.Positive definite kernels.Mercer's expansion theorem132

3.Singular Integral Equations139

34.Discontinuous kernels140

35.Examples.Band spectrum141

Chapter 4.VOLTERRA INTEGRAL EQUATIONS145

1.Volterra Integral Equations of the Second Kind145

36.Existence and uniqueness of solutions145

37.Resolvent kernels147

38.Application to linear differential equations149

39.The singular kernel P(s,t)/(s,t)a151

2.Volterra Integral Equations of the First Kind153

40.Reduction to integral equations of the second kind153

41.Abel integral equations154

Chapter 5.THE GENERAL EXPANSION THEOREM(WEYL-STONE-TITCHMARSH-KODAIRA'S THEOREM)159

1.Classification of Singular Boundary Points160

42.Green's formula160

43.Limit point case and limit circle case162

44.Definition of m1(λ) and m2(λ)170

2.The General Expansion Theorem173

45.Application of the Hilbert-Schmidt expansion theorem173

46.Helly's theorem and Poisson's integral formula177

47.The Weyl-Stone-Titchmarsh-Kodaira theorem183

48.Density matrix190

3.Examples192

49.The Fourier series expansion192

50.The Fourier integral theorem194

51.The Hermite function expansion196

52.The Hankel integral theorem199

53.The Fourier-Bessel series expansion202

54.The Laguerre function expansion205

Chapter 6.NON-LINEAR INTEGRAL EQUATIONS209

55.Non-linear Volterra integral equations209

56.Non-linear Fredholm integral equations210

Appendix.FROM THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE213

A theorem on normal family of regular functions(Part 44)213

Hurwitz's theorem(Part 47)213

The Poisson integral formula(Part 46)214

BIBLIOGRAPHY217

INDEX219

热门推荐