图书介绍
Lectures on Differential and Integral Equations2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 著
- 出版社: Inc.
- ISBN:
- 出版时间:1960
- 标注页数:220页
- 文件大小:52MB
- 文件页数:230页
- 主题词:
PDF下载
下载说明
Lectures on Differential and Integral EquationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS1
1.Successive Approximations1
1.Existence and uniqueness of the solution of the ordinary differential equation of the first order1
2.Remark on approximate solutions6
3.Integration constants8
4.Solution by power series expansion10
5.Differential equations containing parameters.Perturbation theory14
6.Existence and uniqueness of the solution of a system of differential equations17
2.Linear Differential Equations of the nth Order21
7.Singular points for linear differential equations21
8.Fundamental system of solutions23
9.Wronskian.Liouville's formula27
10.Lagrange's method of variation of constants and D'Alembert's method of reduction of order29
11.Linear differential equations with constant coefficients31
3.Second Order Differential Equations of the Fuchs Type37
12.Regular singular points.Fuchs'theorem37
13.Gauss differential equations45
14.Legendre differential equations48
15.Bessel differential equations51
Chapter 2.THE BOUNDARY VALUE PROBLEM FOR LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER61
1.Boundary Value Problem61
16.Boundary value problem of the Sturm-Liouville type61
17.Green's function.Reduction to integral equations64
18.Periodic solutions.Generalized Green's function68
2.Hilbert-Schmidt Theory of Integral Equations with Symmetric Kernels76
19.The Ascoli-Arzelà theorem76
20.Existence proof for the eigenvalues80
21.The Bessel inequality.The Hilbert-Schmidt expansion theorem83
22.Approximations of eigenvalues.Rayleigh's principle and the Kryloff-Weinstein theorem91
23.Inhomogeneous integral equations96
24.Hermite,Laguerre and Legendre polynomials100
3.Asymptotic Expression of Eigenvalues and Eigenfunctions,Liouville's Method110
25.The Liouville transformation110
26.Asymptotic expressions of eigenvalues and eigenfunctions112
Chapter 3.FREDHOLM INTEGRAL EQUATIONS115
1.Fredholm Alternative Theorem115
27.The case when ∫ba∫ba|K(s,t)|2 ds dt<1115
28.The general case118
29.Fredholm's alternative theorem125
2.The Schmidt Expansion Theorem and the Mercer Expansion Theorem127
30.Operator-theoretical notations127
31.The Schmidt expansion theorem128
32.Application to Fredholm integral equation of the first kind131
33.Positive definite kernels.Mercer's expansion theorem132
3.Singular Integral Equations139
34.Discontinuous kernels140
35.Examples.Band spectrum141
Chapter 4.VOLTERRA INTEGRAL EQUATIONS145
1.Volterra Integral Equations of the Second Kind145
36.Existence and uniqueness of solutions145
37.Resolvent kernels147
38.Application to linear differential equations149
39.The singular kernel P(s,t)/(s,t)a151
2.Volterra Integral Equations of the First Kind153
40.Reduction to integral equations of the second kind153
41.Abel integral equations154
Chapter 5.THE GENERAL EXPANSION THEOREM(WEYL-STONE-TITCHMARSH-KODAIRA'S THEOREM)159
1.Classification of Singular Boundary Points160
42.Green's formula160
43.Limit point case and limit circle case162
44.Definition of m1(λ) and m2(λ)170
2.The General Expansion Theorem173
45.Application of the Hilbert-Schmidt expansion theorem173
46.Helly's theorem and Poisson's integral formula177
47.The Weyl-Stone-Titchmarsh-Kodaira theorem183
48.Density matrix190
3.Examples192
49.The Fourier series expansion192
50.The Fourier integral theorem194
51.The Hermite function expansion196
52.The Hankel integral theorem199
53.The Fourier-Bessel series expansion202
54.The Laguerre function expansion205
Chapter 6.NON-LINEAR INTEGRAL EQUATIONS209
55.Non-linear Volterra integral equations209
56.Non-linear Fredholm integral equations210
Appendix.FROM THE THEORY OF FUNCTIONS OF A COMPLEX VARIABLE213
A theorem on normal family of regular functions(Part 44)213
Hurwitz's theorem(Part 47)213
The Poisson integral formula(Part 46)214
BIBLIOGRAPHY217
INDEX219
热门推荐
- 337414.html
- 28663.html
- 3814489.html
- 205323.html
- 1019411.html
- 886453.html
- 3095241.html
- 2674481.html
- 823200.html
- 1755742.html
- http://www.ickdjs.cc/book_2239532.html
- http://www.ickdjs.cc/book_3229291.html
- http://www.ickdjs.cc/book_285603.html
- http://www.ickdjs.cc/book_546643.html
- http://www.ickdjs.cc/book_3393705.html
- http://www.ickdjs.cc/book_1764542.html
- http://www.ickdjs.cc/book_2627424.html
- http://www.ickdjs.cc/book_2937076.html
- http://www.ickdjs.cc/book_2036319.html
- http://www.ickdjs.cc/book_819611.html