图书介绍

计算数论 第2版 世界图书出版公司2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

计算数论 第2版 世界图书出版公司
  • SONG Y.YAN著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787506271905
  • 出版时间:2004
  • 标注页数:435页
  • 文件大小:57MB
  • 文件页数:456页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计算数论 第2版 世界图书出版公司PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Elementary Number Theory1

1.1 Introduction1

1.1.1 What is Number Theory?1

1.1.2 Applications of Number Theory13

1.1.3 Algebraic Preliminaries14

1.2 Theory of Divisibility21

1.2.1 Basic Concepts and Properties of Divisibility21

1.2.2 Fundamental Theorem of Arithmetic27

1.2.3 Mersenne Primes and Fermat Numbers33

1.2.4 Euclid's Algorithm40

1.2.5 Continued Fractions44

1.3 Diophantine Equations52

1.3.1 Basic Concepts of Diophantine Equations52

1.3.2 Linear Diophantine Equations54

1.3.3 Pell's Equations57

1.4 Arithmetic Functions63

1.4.1 Multiplicative Functions63

1.4.2 Functions ?(n),σ(n)and s(n)66

1.4.3 Perfect,Amicable and Sociable Numbers71

1.4.4 Functionsφ(n),λ(n)andμ(n)79

1.5 Distribution of Prime Numbers85

1.5.1 Prime Distribution Functionπ(x)85

1.5.2 Approximations of π(x)by x/lnx87

1.5.3 Approximations of π(x)by Li(x)94

1.5.4 The Riemannξ-Functionξ(s)95

1.5.5 The nth Prime104

1.5.6 Distribution of Twin Primes106

1.5.7 The Arithmetic Progression of Primes110

1.6 Theory of Congruences111

1.6.1 Basic Concepts and Properties of Congruences111

1.6.2 Modular Arithmetic118

1.6.3 Linear Congruences123

1.6.4 The Chinese Remainder Theorem130

1.6.5 High-Order Congruences133

1.6.6 Legendre and Jacobi Symbols139

1.6.7 Orders and Primitive Roots150

1.6.8 Indices and kth Power Residues155

1.7 Arithmetic of Elliptic Curves160

1.7.1 Basic Concepts of Elliptic Curves160

1.7.2 Geometric Composition Laws of Elliptic Curves163

1.7.3 Algebraic Computation Laws for Elliptic Curves164

1.7.4 Group Laws on Elliptic Curves168

1.7.5 Number of Points on Elliptic Curves169

1.8 Bibliographic Notes and Further Reading171

2.Computational/Algorithmic Number Theory173

2.1 Introduction173

2.1.1 What is Computational/Algorithmic Number Theory?174

2.1.2 Effective Computability177

2.1.3 Computational Complexity181

2.1.4 Complexity of Number-Theoretic Algorithms188

2.1.5 Fast Modular Exponentiations194

2.1.6 Fast Group Operations on Elliptic Curves198

2.2 Algorithms for Primality Testing202

2.2.1 Deterministic and Rigorous Primality Tests202

2.2.2 Fermat's Pseudoprimality Test206

2.2.3 Strong Pseudoprimality Test208

2.2.4 Lucas Pseudoprimality Test215

2.2.5 Elliptic Curve Test222

2.2.6 Historical Notes on Primality Testing225

2.3 Algorithms for Integer Factorization228

2.3.1 Complexity of Integer Factorization228

2.3.2 Trial Division and Fermat Method232

2.3.3 Legendre's Congruence234

2.3.4 Continued FRACtion Method (CFRAC)237

2.3.5 Quadratic and Number Field Sieves(QS/NFS)240

2.3.6 Polland's"rho"and"p-1"Methods244

2.3.7 Lenstra's Elliptic Curve Method (ECM)251

2.4 Algorithms for Discrete Logarithms254

2.4.1 Shanks'Baby-Step Giant-Step Algorithm255

2.4.2 Silver-Pohlig-Hellman Algorithm258

2.4.3 Index Calculus for Discrete Logarithms262

2.4.4 Algorithms for Elliptic Curve Discrete Logarithms266

2.4.5 Algorithm for Root Finding Problem270

2.5 Quantum Number-Theoretic Algorithms273

2.5.1 Quantum Information and Computation273

2.5.2 Quantum Computability and Complexity278

2.5.3 Quantum Algorithm for Integer Factorization279

2.5.4 Quantum Algorithms for Discrete Logarithms285

2.6 Miscellaneous Algorithms in Number Theory287

2.6.1 Algorithms for Computing π(x)287

2.6.2 Algorithms for Generating Amicable Pairs292

2.6.3 Algorithms for Verifying Goldbach's Conjecture295

2.6.4 Algorithm for Finding Odd Perfect Numbers299

2.7 Bibliographic Notes and Further Reading300

3.Applied Number Theory in Computing/Cryptography303

3.1 Why Applied Number Theory?303

3.2 Computer Systems Design305

3.2.1 Representing Numbers in Residue Number Systems305

3.2.2 Fast Computations in Residue Number Systems308

3.2.3 Residue Computers312

3.2.4 Complementary Arithmetic315

3.2.5 Hash Functions317

3.2.6 Error Detection and Correction Methods321

3.2.7 Random Number Generation326

3.3 Cryptography and Information Security332

3.3.1 Introduction332

3.3.2 Secret-Key Cryptography333

3.3.3 Data/Advanced Encryption Standard (DES/AES)344

3.3.4 Public-Key Cryptography348

3.3.5 Discrete Logarithm Based Cryptosystems354

3.3.6 RSA Public-Key Cryptosystem358

3.3.7 Quadratic Residuosity Cryptosystems373

3.3.8 Elliptic Curve Public-Key Cryptosystems379

3.3.9 Digital Signatures385

3.3.10 Digital Signature Standard(DSS)392

3.3.11 Database Security395

3.3.12 Secret Sharing399

3.3.13 Internet/Web Security and Electronic Commerce403

3.3.14 Steganography409

3.3.15 Quantum Cryptography410

3.4 Bibliographic Notes and Further Reading411

Bibliography415

Index429

热门推荐