图书介绍

光电子学与光子学的原理及应用 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

光电子学与光子学的原理及应用 英文版
  • (英)S.O.Kasap著 著
  • 出版社: 电子工业出版社
  • ISBN:7505385771
  • 出版时间:2003
  • 标注页数:340页
  • 文件大小:106MB
  • 文件页数:40034233页
  • 主题词:光电子学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

光电子学与光子学的原理及应用 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1. WAVE NATURE OF LIGHT1

1.1 Light Waves in a Homogeneous Medium1

A. Plane Electromagnetic Wave1

B. Maxwells Wave Equation and Diverging Waves4

Example 1.1.1:A diverging laser beam7

1.2 Refractive Index7

Example 1.2.1: Relative permittivity and refractive index8

1.3 Group Velocity and Group Index9

Example 1.3.1: Group velocity11

Example 1.3.2: Group and phase velocities11

1.4 Magnetic Field, Irradiance, and Poynting Vector11

Example 1.4.1: Electric and magnetic fields in light13

1.5 Snells Law and Total Internal Reection (TIR)14

1.6 Fresnels Equations16

A. Amplitude Reection and Transmission Coefficients16

Example 1.6.1: Evanescent wave22

B. Intensity, Reectance, and Transmittance23

Example 1.6.2: Reection of light from a less dense medium24

Example 1.6.3: Reection at normal incidence. Internal andexternal reection25

Example 1.6.4: Antireection coatings on solar cells26

Example 1.6.5: Dielectric mirrors27

1.7 Multiple Interference and Optical Resonators28

Example 1.7.1: Resonator modes and spectral width31

1.8 Goos-Hanchen Shift and Optical Tunneling32

1.9 Temporal and Spatial Coherence34

1.10 Diffraction Principles37

A. Fraunhofer Diffraction37

Example 1.10.1: Resolving power of imaging systems41

B. Diffraction grating42

Questions and Problems44

2. DIELECTRIC WAVEGUIDES AND OPTICAL FIBERS50

2.1 Symmetric Planar Dielectric Slab Waveguide50

A. Waveguide Condition50

B. Single and Multimode Waveguides55

C. TE and TM Modes56

Example 2.1.1: Waveguide modes57

Example 2.1.2: V-number and the number of modes58

Example 2.1.3: Mode field distance (MFD)59

2.2 Modal and Waveguide Dispersion in the Planar Waveguide60

A. Waveguide Dispersion Diagram60

B. Intermodal Dispersion60

C. Intramodal Dispersion62

2.3 Step Index Fiber63

Example 2.3.1: A multimode fiber68

Example 2.3.2: A single mode fiber68

Example 2.3.3: Single mode cut-off wavelength68

Example 2.3.4: Group velocity and delay69

2.4 Numerical Aperture69

Example 2.4.1: A multimode fiber and total acceptance angle71

Example 2.4.2: A single mode fiber71

2.5 Dispersion in Single Mode Fibers71

A. Material Dispersion71

B. Waveguide Dispersion73

C. Chromatic Dispersion or Total Dispersion74

D. Profile and Polarization Dispersion Effects75

E. Dispersion Flattened Fibers76

Example 2.5.1: Material dispersion77

Example 2.5.2: Material, waveguide, and chromatic dispersion77

2.6 Bit-Rate, Dispersion, Electrical, and Optical Bandwidth78

A. Bit-Rate and Dispersion78

B. Optical and Electrical Bandwidth81

Example 2.6.1: Bit-rate and dispersion82

2.7 The Graded Index Optical Fiber83

Example 2.7.1: Dispersion in a graded-index fiber and bit-rate85

2.8 Light Absorption and Scattering87

A. Absorption87

B. Scattering88

2.9 Attenuation in Optical Fibers90

Example 2.9.1: Rayleigh scattering limit93

Example 2.9.2: Attenuation along an optical ber94

2.10 Fiber Manufacture94

A. Fiber Drawing94

B. Outside Vapor Deposition (OVD)96

Example 2.10.1: Fiber drawing98

Questions and Problems98

3. SEMICONDUCTOR SCIENCE AND LIGHT EMIING DIODES107

3.1 Semiconductor Concepts and Energy Bands107

A. Energy Band Diagrams107

B. Semiconductor Statistics110

C. Extrinsic Semiconductors113

D. Compensation Doping116

E. Degenerate and Nondegenerate Semiconductors117

F Energy Band Diagrams in an Applied Field118

Example 3.1.1: Fermi levels in semiconductors118

Example 3.1.2: Conductivity119

3.2 Direct and Indirect Bandgap Semiconductors: E-k Diagrams119

3.3 pn Junction Principles123

A. Open Circuit123

B. Forward Bias126

C. Reverse Bias131

D. Depletion Layer Capacitance134

E. Recombination Lifetime135

Example 3.3.1: A direct band gap pn junction136

3.4 The pn Junction Band Diagram137

A. Open Circuit137

B. Forward and Reverse Bias138

3.5 Light Emitting Diodes139

A. Principles139

B. Device Structures141

3.6 LED Materials142

3.7 Heterojunction High Intensity LEDS144

3.8 LED Characteristics147

Example 3.8.1: LED output spectrum149

Example 3.8.2: LED output wavelength variations149

Example 3.8.3: InGaAsP on InP substrate150

3.9 LEDs for Optical Fiber Communications150

Questions and Problems153

4. STIMULATED EMISSION DEVICES LASERS159

4.1 Stimulated Emission and Photon Amplification159

4.2 Stimulated Emission Rate and Einstein Coefficients162

4.3 Optical Fiber Amplifiers164

4.4 Gas Laser: The He-Ne Laser166

Example 4.4.1: Efficiency of the He-Ne laser169

Example 4.4.2: Laser beam divergence170

4.5 The Output Spectrum of a Gas Laser170

Example 4.5.1: Doppler broadened linewidth173

4.6 LASER Oscillation Conditions174

A. Optical Gain Coefficient g174

B. Threshold Gain gth176

C. Phase Condition and Laser Modes178

Example 4.6.1: Threshold population inversionfor the He-Ne laser181

4.7 Principle of the Laser Diode181

4.8 Heterostructure Laser Diodes185

Example 4.8.1: Modes in a laser and the optical cavity length189

4.9 Elementary Laser Diode Characteristics190

Example 4.9.1: Laser output wavelength variations192

4.10 Steady State Semiconductor Rate Equation192

4.11 Light Emitters for Optical Fiber Communications195

4.12 Single Frequency Solid State Lasers196

Example 4.12.1: DFB Laser198

4.13 Quantum Well Devices199

Example 4.13.1:A GaAs quantum well202

4.14 Veical Cavity Surface Emitting Lasers (VCSELs)203

4.15 Optical Laser Amplifiers205

4.16 Holography206

Questions and Problems209

5. PHOTODETECTORS217

5.1 Principle of the pn Junction Photodiode217

5.2 Ramos Theorem and External Photocurrent219

5.3 Absorption Coefficient and Photodiode Materials221

5.4 Quantum Efficiency and Responsivity224

5.5 The pin Photodiode225

Example 5.5.1: Operation and speed of a pin photodiode228

Example 5.5.2: Photocarrier diffusion in a pin photodiode228

Example 5.5.3: Responsivity of a pin photodiode229

5.6 Avalanche Photodiode230

Example 5.6.1: InGaAs APD Responsivity234

Example 5.6.2: Silicon APD234

5.7 Heterojunction Photodiodes234

A. Separate Absorption and Multiplication (SAM) APD234

B. Superlattice APDs 2365.8 Phototransistors237

5.9 Photoconductive Detectors and Photoconductive Gain239

5.10 Noise In Photodetectors242

A. The pn Junction and the pin Photodiodes242

Example 5.10.1: NEP of a Si pin photodiode244

Example 5.10.2: Noise of an ideal photodetector244

Example 5.10.3: SNR of a receiver245

B. Avalanche Noise in the APD246

Example 5.10.4: Noise in an APD246Questions and Problems247

6. PHOTOVOLTAIC DEVICES254

6.1 Solar Energy Spectrum254

Example 6.1.1: Solar energy conversion256

6.2 Photovoltaic Device Principles257

Example 6.2.1: The photocurrent Iph260

6.3 pn Junction Photovoltaic I-V Characteristics261

Example 6.3.1:A solar cell driving a resistive load264

Example 6.3.2: Open circuit voltage and illumination264

6.4 Series Resistance and Equivalent Circuit265

Example 6.4.1: Solar cells in parallel267

6.5 Temperature Effects268

6.6 Solar Cells Materials, Devices, and Efficiencies269

Questions and Problems272

7. POLARIZATION AND MODULATION OF LIGHT275

7.1 Polarization275

A. State of Polarization275

Example 7.1.1: Elliptical and circular polarization278

B. Maluss Law279

7.2 Light Propagation in an Anisotropic Medium: Birefringence280

A. Optical Anisotropy280

B. Uniaxial Crystals and Fresnels Optical Indicatrix281

C. Birefringence of Calcite285

D. Dichroism286

7.3 Birefringent Optical Devices287

A. Retarding Plates287

Example 7.3.1: Quartz half-wave plate288

Example 7.3.2: Circular polarization from linear polarization289

B. Soleil-Babinet Compensator289

C. Birefringent Prisms291

7.4 Optical Activity and Circular Birefringence292

7.5 Electro-Optic Effects294

A. Definitions294

B. Pockels Effect295

Example 7.5.1: Pockels Cell Modulator299

C. Kerr Effect300

Example 7.5.2: Kerr effect modulator301

7.6 Integrated Optical Modulators301

A. Phase and Polarization Modulation301

B. Mach-Zehnder Modulator303

C. Coupled Waveguide Modulators304

Example 7.6.1: Modulated directional coupler307

7.7 Acousto-Optic Modulator307

Example 7.7.1: Modulated Directional Coupler309

7.8 Magneto-Optic Effects310

7.9 Non-Linear Optics and Second Harmonic Generation311

Questions and Problems314

NOTATION AND ABBREVIATIONS323

INDEX332

热门推荐