图书介绍
经典位势论及其对应的概率论 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)杜布著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510058417
- 出版时间:2013
- 标注页数:846页
- 文件大小:156MB
- 文件页数:870页
- 主题词:位势论-英文
PDF下载
下载说明
经典位势论及其对应的概率论 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part 1 Classical and Parabolic Potential Theory3
Chapter Ⅰ Introduction to the Mathematical Background of Classical Potential Theory3
1.The Context of Green's Identity3
2.Function Averages4
3.Harmonic Functions4
4.Maximum-Minimum Theorem for Harmonic Functions5
5.The Fundamental Kernel for RN and Its Potentials6
6.Gauss Integral Theorem7
7.The Smoothness of Potentials;The Poisson Equation8
8.Harmonic Measure and the Riesz Decomposition11
Chapter Ⅱ Basic Properties of Harmonic,Subharmonic,and Superharmonic Functions14
1.The Green Function of a Ball;The Poisson Integral14
2.Harnack's Inequality16
3.Convergence of Directed Sets of Harmonic Functions17
4.Harmonic,Subharmonic,and Superharmonic Functions18
5.Minimum Theorem for Superharmonic Functions20
6.Application of the Operation τB20
7.Characterization of Superharmonic Functions in Terms of Harmonic Functions22
8.Differentiable Superharmonic Functions23
9.Application of Jensen's Inequality23
10.Superharmonic Functions on an Annulus24
11.Examples25
12.The Kelvin Transformation(N≥2)26
13.Greenian Sets27
14 The L1(μB-)and D(μB-)Classes of Harmonic Functions on a Ball B;The Riesz-Herglotz Theorem27
15.The Fatou Boundary Limit Theorem31
16.Minimal Harmonic Functions33
Chapter Ⅲ Infima of Families of Superharmonic Functions35
1.Least Superharmonic Majorant(LM) and Greatest Subharmonic Minorant(GM)35
2.Generalization of Theorem 136
3.Fundamental Convergence Theorem(Preliminary Version)37
4.The Reduction Operation38
5.Reduction Properties41
6.A Smallness Property of Reductions on Compact Sets42
7.The Natural(Pointwise)Order Decomposition for Positive Superharmonic Functions43
Chapter Ⅳ Potentials on Special Open Sets45
1.Special Open Sets,and Potentials on Them45
2.Examples47
3.A Fundamental Smallness Property of Potentials48
4.Increasing Sequences of Potentials49
5.Smoothing of a Potential49
6.Uniqueness of the Measure Determining a Potential50
7.Riesz Measure Associated with a Superharmonic Function51
8.Riesz Decomposition Theorem52
9.Counterpart for Superharmonic Functions on R2 of the Riesz Decomposition53
10 An Approximation Theorem55
Chapter Ⅴ Polar Sets and Their Applications57
1.Definition57
2.Superharmonic Functions Associated with a Polar Set58
3.Countable Unions of Polar Sets59
4.Properties of Polar Sets59
5.Extension of a Superharmonic Function60
6.Greenian Sets in R2 as the Complements of Nonpolar Sets63
7.Superharmonic Function Minimum Theorem(Extension of Theorem II.5)63
8.Evans-Vasilesco Theorem64
9.Approximation of a Potential by Continuous Potentials66
10.The Domination Principle67
11.The Infinity Set of a Potential and the Riesz Measure68
Chapter Ⅵ The Fundamental Convergence Theorem and the Reduction Operation70
1.The Fundamental Convergence Theorem70
2.Inner Polar versus Polar Sets71
3.Properties of the Reduction Operation74
4.Proofs of the Reduction Properties77
5.Reductions and Capacities84
Chapter Ⅶ Green Functions85
1.Definition of the Green Function GD85
2.Extremal Property of GD87
3.Boundedness Properties of GD88
4.Further Properties of GD90
5.The Potential GDμ of a Measure μ92
6.Increasing Sequences of Open Sets and the Corresponding Green Function Sequences94
7.The Existence of GD versus the Greenian Character of D94
8.From Special to Greenian Sets95
9.Approximation Lemma95
10.The Function GD(·,ζ)|D-{ζ} as a Minimal Harmonic Function96
Chapter Ⅷ The Dirichlet Problem for Relative Harmonic Functions98
1.Relative Harmonic,Superharmonic,and Subharmonic Functions98
2.The PWB Method99
3.Examples104
4.Continuous Boundary Functions on the Euclidean Boundary(h≡1)106
5.h-Harmonic Measure Null Sets108
6.Properties of PWBh Solutions110
7.Proofs for Section 6111
8.h-Harmonic Measure114
9.h-Resolutive Boundaries118
10.Relations between Reductions and Dirichlet Solutions122
11.Generalization of the Operator τh B and Application to GMh123
12.Barriers124
13.h-Barriers and Boundary Point h-Regularity126
14.Barriers and Euclidean Boundary Point Regularity127
15.The Geometrical Significance of Regularity(Euclidean Boundary,h≡1)128
16.Continuation of Section 13130
17.h-Harmonic Measure μh D as a Function ofD131
18.The Extension G= D of GD and the Harmonic Average μD(ξ,G= B(η,·))When D ? B132
19.Modification of Section 18 for D=R2136
20.Interpretation of φD as a Green Function with Pole ∞(N=2)139
21.Variant of the Operator τB140
Chapter Ⅸ Lattices and Related Classes of Functions141
1.Introduction141
2.LMh D u for an h-Subharmonic Function u141
3.The Class D(μh D-)142
4.The Class Lp(μh D-)(p≥1)144
5.The Lattices(S±,≤)and(S+,≤)145
6.The Vector Lattice (S,≤)146
7.The Vector Lattice Sm148
8.The Vector Lattice Sp149
9.The Vector Lattice Sqb150
10.The Vector Lattice Ss151
11.A Refinement ofthe Riesz Decomposition152
12.Lattices of h-Harmonic Functions on a Ball152
Chapter Ⅹ The Sweeping Operation155
1.Sweeping Context and Terminology155
2. Relation between Harmonic Measure and the Sweeping Kernel157
3.Sweeping Symmetry Theorem158
4.Kernel Property of δA D158
5.Swept Measures and Functions160
6.Some Properties of δA D161
7.Poles of a Positive Harmonic Function163
8.Relative Harmonic Measure on a Polar Set164
Chapter Ⅺ The Fine Topology166
1.Definitions and Basic Properties166
2.A Thinness Criterion168
3.Conditions That ξ∈A∫169
4.An Internal Limit Theorem171
5.Extension of the Fine Topology to RN∪{∞}175
6.The Fine Topology Derived Set of a Subset of RN177
7.Application to the Fundamental Convergence Theorem and to Reductions177
8.Fine Topology Limits and Euclidean Topology Limits178
9.Fine Topology Limits and Euclidean Topology Limits(Continued)179
10.Identification of A∫ in Terms ofa Special Functionu180
11.Quasi-Lindel?f Property180
12.Regularity in Terms of the Fine Topology181
13.The Euclidean Boundary Set of Thinness of a Greenian Set182
14.The Support of a Swept Measure183
15.Characterization of ‖μ‖A183
16.A Special Reduction184
17.The Fine Interior of a Set of Constancy of a Superharmonic Function184
18.The Support of a Swept Measure (Continuation of Section 14)185
19.Superharmonic Functions on Fine-Open Sets187
20.A Generalized Reduction187
21.Limits of Superharmonic Functions at Irregular Boundary Points of Their Domains190
22.The Limit Harmonic Measure ∫μD191
23.Extension of the Domination Principle194
Chapter Ⅻ The Martin Boundary195
1.Motivation195
2.The Martin Functions196
3.The Martin Space197
4.Preliminary Representations of Positive Harmonic Functions and Their Reductions199
5.Minimal Harmonic Functions and Their Poles200
6.Extension of Lemma 4201
7.The Set of Nonminimal Martin Boundary Points202
8.Reductions on the Set of Minimal Martin Boundary Points203
9.The Martin Representation204
10.Resolutivity of the Martin Boundary207
11.Minimal Thinness at a Martin Boundary Point208
12.The Minimal-Fine Topology210
13.First Martin Boundary Counterpart of Theorem XI.4(c)and(d)213
14.Second Martin Boundary Counterpart of Theorem XI.4(c)213
15.Minimal-Fine Topology Limits and Martin Topology Limits at a Minimal Martin Boundary Point215
16.Minimal-Fine Topology Limits and Martin Topology Limits at a Minimal Martin Boundary Point(Continued)216
17.Minimal-Fine Martin Boundary Limit Functions216
18.The Fine Boundary Function of a Potential218
19.The Fatou Boundary Limit Theorem for the Martin Space219
20.Classical versus Minimal-Fine Topology Boundary Limit Theorems for Relative Superharmonic Functions on a Ball in RN221
21.Nontangential and Minimal-Fine Limits at a Half-space Boundary222
22.Normal Boundary Limits for a Half-space223
23.Boundary Limit Function (Minimal-Fine and Normal)of a Potential on a Half-space225
Chapter ⅩⅢ Classical Energy and Capacity226
1.Physical Context226
2.Measures and Their Energies227
3.Charges and Their Energies228
4.Inequalities between Potentials,and the Corresponding Energy Inequalities229
5.The Function D?GDμ230
6.Classical Evaluation of Energy;Hilbert Space Methods231
7.The Energy Functional(Relative to an Arbitrary Greenian Subset D of RN)233
8.Alternative Proofs ofTheorem 7(b+)235
9.Sharpening of Lemma 4237
10.The Classical Capacity Function237
11.Inner and Outer Capacities(Notation of Section 10)240
12.Extremal Property Characterizations of Equilibrium Potentials(Notation of Section 10)241
13.Expressions for C(A)243
14.The Gauss Minimum Problems and Their Relation to Reductions244
15.Dependence of C on D247
16.Energy Relative to R2248
17.The Wiener Thinness Criterion249
18.The Robin Constant and Equilibrium Measures Relative to R2(N=2)251
Chapter ⅩⅣ One-Dimensional Potential Theory256
1.Introduction256
2.Harmonic,Superharmonic,and Subharmonic Functions256
3.Convergence Theorems256
4.Smoothness Properties of Superharmonic and Subharmonic Functions257
5.The Dirichlet Problem(Euclidean Boundary)257
6.Green Functions258
7.Potentials of Measures259
8.Identification of the Measure Defining a Potential259
9.Riesz Decomposition260
10.The Martin Boundary261
Chapter ⅩⅤ Parabolic Potential Theory:Basic Facts262
1.Conventions262
2.The Parabolic and Coparabolic Operators263
3.Coparabolic Polynomials264
4.The Parabolic Green Function of RN266
5.Maximum-Minimum Parabolic Function Theorem267
6.Application of Green's Theorem269
7.The Parabolic Green Function of a Smooth Domain;The Riesz Decomposition and Parabolic Measure(Formal Treatment)270
8.The Green Function of an Interval272
9.Parabolic Measure for an Interval273
10.Parabolic Averages275
11.Harnack's Theorems in the Parabolic Context276
12.Superparabolic Functions277
13.Superparabolic Function Minimum Theorem279
14.The Operation ? and the Defining Average Properties of Superparabolic Functions280
15.Superparabolic and Parabolic Functions on a Cylinder281
16.The Appell Transformation282
17.Extensions of a Parabolic Function Defined on a Cylinder283
Chapter ⅩⅥ Subparabolic,Superparabolic,and Parabolic Functions on a Slab285
1.The Parabolic Poisson Integral fora Slab285
2.A Generalized Superparabolic Function Inequality287
3.A Crrterion of a Subparabolic Function Supremum288
4.A Boundary Limit Criterion for the Identically Vanishing of a Positive Parabolic Function288
5.A Condition that a Positive Parabolic Function Be Representable by a Poisson Integral290
6.The L1(?-)and D(?-)Classes of Parabolic Functions on a Slab290
7.The Parabolic Boundary Limit Theorem292
8.Minimal Parabolic Functions on a Slab293
Chapter ⅩⅦ Parabolic Potential Theory (Continued)295
1.Greatest Minorants and Least Majorants295
2.The Parabolic Fundamental Convergence Theorem(Preliminary Version)and the Reduction Operation295
3.The Parabolic Context Reduction Operations296
4.The Parabolic Green Function298
5.Potentials300
6.The Smoothness of Potentials303
7.Riesz Decomposition Theorem305
8.Parabolic-Polar Sets305
9.The Parabolic-Fine Topology308
10.Semipolar Sets309
11.Preliminary List of Reduction Properties310
12.A Criterion of Parabolic Thinness313
13.The Parabolic Fundamental Convergence Theorem314
14.Applications of the Fundamental Convergence Theorem to Reductions and to Green Functions316
15.Applications of the Fundamental Convergence Theorem to the Parabolic-Fine Topology317
16.Parabolic-Reduction Properties317
17.Proofs of the Reduction Properties in Section 16320
18.The Classical Context Green Function in Terms of the Parabolic Context Green Function(N≥1)326
19.The Quasi-Lindel?f Property328
Chapter ⅩⅧ The Parabolic Dirichlet Problem,Sweeping,and Exceptional Sets329
1.Relativization of the Parabolic Context;The PWB Method in this Context329
2.h-Parabolic Measure332
3.Parabolic Barriers333
4.Relations between the Classical Dirichlet Problem and the Parabolic Context Diriehlet Problem334
5.Classical Reductions in the Parabolic Context335
6.Parabolic Regularity of Boundary Points337
7.Parabolic Regularity in Terms of the Fine Topology341
8.Sweeping in the Parabolic Context341
9.The Extension ?of ? and the Parabolic Average ?(?,?(·,?)when ?343
10.Conditions that ξ∈?ps345
11.Parabolic-and Coparabolic-Polar Sets347
12.Parabolic-and Coparabolic-Semipolar Sets348
13.The Support of a Swept Measure350
14.An Internal Limit Theorem;The Coparabolic-Fine Topology Smoothness of Superparabolic Functions351
15.Application to a Version of the Parabolic Context Fatou Boundary Limit Theorem on a Slab357
16.The Parabolic Context Domination Principle358
17.Limits of Superparabolic Functions at Parabolic-Irregular Boundary Points of Their Domains358
18.Martin Flat Point Set Pairs361
19.Lattices and Related Classes of Functions in the Parabolic Context361
Chapter ⅩⅨ The Martin Boundary in the Parabolic Context363
1.Introduction363
2.The Martin Functions of Martin Point Set and Measure Set Pairs364
3.The Martin Space ?M366
4.Preparatory Material for the Parabolic Context Martin Representation Theorem367
5.Minimal Parabolic Functions and Their Poles369
6.The Set of Nonminimal Martin Boundary Points370
7.The Martin Representation in the Parabolic Context371
8 Martin Boundary of a Slab ?=RN×]0,δ[with 0<δ≤+∞371
9.Martin Boundaries for the Lower Half-space of?Nand for ?N374
10.The Martin Boundary of?=]0,+∞[×]-∞,δ[375
11.?WB?Solutions on ?M377
12.The Minimal-Fine Topology in the Parabolic Context377
13.Boundary Counterpart ofTheorem ⅩⅧ.14(f)379
14.The Vanishing ofPotentials on ?M?381
15.The Parabolic Context Fatou Boundary Limit Theorem on Martin Spaces381
Part 2 Probabilistic Counterpart of Part1387
Chapter Ⅰ Fundamental Concepts of Probability387
1.Adapted Families of Functions on Measurable Spaces387
2.Progressive Measurability388
3.Random Variables390
4.Conditional Expectations391
5.Conditional Expectation Continuity Theorem393
6.Fatou's Lemma for Conditional Expectations396
7.Dominated Convergence Theorem for Conditional Expectations397
8.Stochastic Processes,“Evanescent,""Indistinguishable,""Standard Modification,""Nearly"398
9.The Hitting of Sets and Progressive Measurability401
10.Canonical Processes and Finite-Dimensional Distributions402
11.Choice of the Basic Probability Space404
12.The Hitting of Sets by a Right Continuous Process405
13.Measurability versus Progressive Measurability of Stochastic Processes407
14.Predictable Families of Functions410
Chapter Ⅱ Optional Times and Associated Concepts413
1.The Context of Optional Times413
2.Optional Time Properties(Continuous Parameter Context)415
3.Process Functions at Optional Times417
4.Hitting and Entry Times419
5.Application to Continuity Properties of Sample Functions421
6.Continuation of Section 5423
7.Predictable Optional Times423
8.Section Theorems425
9.The Graph of a Predictable Time and the Entry Time of a Predictable Set426
10.Semipolar Subsets of R+×Ω427
11.The Classes D and Lp of Stochastic Processes428
12.Decomposition of Optional Times;Accessible and Totally Inaccessible Optional Times429
Chapter Ⅲ Elements of Martingale Theory432
1.Definitions432
2.Examples433
3.Elementary Properties(Arbitrary Simply Ordered Parameter Set)435
4.The Parameter Set in Martingale Theory437
5.Convergence of Supermartingale Families437
6.Optional Sampling Theorem(Bounded Optional Times)438
7.Optional Sampling Theorem for Right Closed Processes440
8.Optional Stopping442
9.Maximal Inequalities442
10.Conditional Maximal Inequalities444
11.An Lp Inequality for Submartingale Suprema444
12.Crossings445
13.Forward Convergence in the L1 Bounded Case450
14.Convergence ofa Uniformly Integrable Martingale451
15.Forward Convergence of a Right Closable Supermartingale453
16.Backward Convergence of a Martingale454
17.Backward Convergence of a Supermartingale455
18.The τ Operator455
19.The Natural Order Decomposition Theorem for Supermartingales457
20.The Operators LM and GM458
21.Supermartingale Potentials and the Riesz Decomposition459
22.Potential Theory Reductions in a Discrete Parameter Probability Context459
23.Application to the Crossing Inequalities461
Chapter Ⅳ Basic Properties of Continuous Parameter Supermartingales463
1.Continuity Properties463
2.Optional Sampling of Uniformly Integrable Continuous Parameter Martingales468
3.Optional Sampling and Convergence of Continuous Parameter Supermartingales470
4.Increasing Sequences of Supermartingales473
5.Probability Version of the Fundamental Convergence Theorem of Potential Theory476
6.Quasi-Bounded Positive Supermartingales;Generation of Supermartingale Potentials by Increasing Processes480
7.Natural versus Predictable Increasing Processes(I=Z+ or R+)483
8.Generation of Supermartingale Potentials by Increasing Processes in the Discrete Parameter Case488
9.An Inequality for Predictable Increasing Processes489
10.Generation of Supermartingale Potentials by Increasing Processes for Arbitrary Parameter Sets490
11.Generation of Supermartingale Potentials by Increasing Processes in the Continuous Parameter Case:The Meyer Decomposition493
12.Meyer Decomposition of a Submartingale495
13.Role of the Measure Associated with a Supermartingale;The Supermartingale Domination Principle496
14.The Operators τ,LM,and GM in the Continuous Parameter Context500
15.Potential Theory on R+×Ω501
16.The FineTopology of R+× Ω502
17.Potential Theory Reductions in a Continuous Parameter Probability Context504
18.Reduction Properties505
19.Proofs ofthe Reduction Properties in Section 18509
20.Evaluation of Reductions513
21.The Energy of a Supermartingale Potential515
22.The Subtraction of a Supermartingale Discontinuity516
23.Supermartingale Decompositions and Discontinuities518
Chapter Ⅴ Lattices and Related Classes of Stochastic Processes520
1.Conventions;The Essential Order520
2.LMx(·)when{x(·),F(·)}Is a Submartingale521
3.Uniformly Integrable Positive Submartingales523
4.LpBounded Stochastic Processes(p≥1)524
5.The Lattices('S±,≤),('S+,≤),(S±,≤),(S+,≤)525
6.The Vector Lattices('S,≤)and(S,≤)528
7.The Vector Lattices('Sm,≤)and(Sm,≤)529
8.The Vector Lattices('Sp,≤)and(Sp,≤)530
9.The Vector Lattices('Sqb,≤)and(Sqb,≤)531
10.The Vector Lattices('Ss,≤)and(Ss,≤)532
11.The Orthogonal Decompositions'Sm='Smqb+'Sms and Sm=Smqb+Sms533
12.Local Martingales and Singular Supermartingale Potentials in(S,≤)534
13.Quasimartingales(Continuous Parameter Context)535
Chapter Ⅵ Markov Processes539
1.The Markov Property539
2.Choice of Filtration544
3.Integral Parameter Markov Processes with Stationary Transition Probabilities545
4.Application of Martingale Theory to Discrete Parameter Markov Processes547
5.Continuous Parameter Markov Processes with Stationary Transition Probabilities550
6.Specialization to Right Continuous Processcs552
7.Continuous Parameter Markov Processes:Lifctimes and Trap Points554
8.Right Continuity of Markov Process Filtrations;A Zero-One(0-1)Law556
9.Strong Markov Property557
10.Probabilistic Potential Theory;Excessive Functions560
11.Excessive Functions and Supermartingales564
12.Excessive Functions and the Hitting Times of Analytic Sets(Notation and Hypotheses of Section 11)565
13.Conditioned Markov Processes566
14.Tied Down Markov Processes567
15.Killed Markov Processes568
Chapter Ⅵ Brownian Motion570
1.Processes with Independent Increments and State Space RN570
2.Brownian Motion572
3.Continuity of Brownian Paths576
4.Brownian Motion Filtrations578
5.Elementary Properties of the Brownian Transition Density and Brownian Motion581
6.The Zero-One Law for Brownian Motion583
7.Tied Down Brownian Motion586
8.André Reflection Principle587
9.Brownian Motion in an Open Set(N≥1)589
10.Space-Time Brownian Motion in an Open Set592
11.Brownian Motion in an Intervai594
12.Probabilistic Evaluation of Parabolic Measure for an Interval595
13.Probabilistic Significance of the Heat Equation and Its Dual596
Chapter Ⅷ599
The It? Integral599
1.Notation599
2.The Size of Г0601
3.Properties ofthe It? Integral602
4.The Stochastic Integral for an Integrand Process in Г0605
5.The Stochastic Integral for an Integrand Process in Г606
6.Proofs of the Properties in Section 3607
7.Extension to Vector-Valued and Complex-Valued Integrands611
8.Martingales Relative to Brownian Motion Filtrations612
9.A Change of Variables615
10.The Role of Brownian Motion Increments618
11.(N=1)Computation of the It? Integral by Riemann-Stieltjes Sums620
12.It?'s Lemma621
13.The Composition of the Basic Functions of Potential Theory with Brownian Motion625
14.The Composition of an Analytic Function with Brownian Motion626
Chapter Ⅸ Brownian Motion and Martingale Theory627
1.Elementary Martingale Applications627
2.Coparabolic Polynomials and Martingale Theory630
3.Superharmonic and Harmonic Functions on RN and Supermartingales and Martingales632
4.Hitting of an Fσ Set635
5.The Hitting of a Set by Brownian Motion636
6.Superharmonic Functions,Excessive for Brownian Motion637
7.Preliminary Treatment of the Composition of a Superharmonic Function with Brownian Motion;A Probabilistic Fatou Boundary Limit Theorem641
8.Excessive and Invariant Functions for Brownian Motion645
9.Application to Hitting Probabilities and to Parabolicity of Transition Densities647
10.(N=2).The Hitting of Nonpolar Sets by Brownian Motion648
11.Continuity of the Composition of a Function with Brownian Motion649
12.Continuity of Superharmonic Functions on Brownian Motion650
13.Preliminary Probabilistic Solution of the Classical Dirichlet Problem651
14.Probabilistic Evaluation of Reductions653
15.Probabilistic Description of the Fine Topology656
16.α-Excessive Functions for Brownian Motion and Their Composition with Brownian Motions659
17.Brownian Motion Transition Functions as Green Functions;The Corresponding Backward and Forward Parabolic Equations661
18.Excessive Measures for Brownian Motion663
19.Nearly Borel Sets for Brownian Motion666
20.Brownian Motion into a Set from an Irregular Boundary Point666
Chapter Ⅹ Conditional Brownian Motion668
1.Definition668
2.h-Brownian Motion in Terms of Brownian Motion671
3.Contexts for(2.1)676
4.Asymptotic Character of h-Brownian Paths at Their Lifetimes677
5.h-Brownian Motion from an Infinity of h680
6.Brownian Motion under Time Reversal682
7.Preliminary Probabilistic Solution of the Dirichlet Problem for h-Harmonic Functions;h-Brownian Motion Hitting Probabilities and the Corresponding Generalized Reductions684
8.Probabilistic Boundary Limit and Internal Limit Theorems for Ratios of Strictly Positive Superharmonic Functions688
9.Conditional Brownian Motion in a Ball691
10.Conditional Brownian Motion Last Hitting Distributions;The Capacitary Distribution of a Set in Terms of a Last Hitting Distribution693
11.The TailσAlgebra ofa Conditional Brownian Motion694
12.Conditional Space-Time Brownian Motion699
13.[Space-Time]Brownian Motion in[?N]RN with Parameter Set R700
Part3705
Chapter Ⅰ Lattices in Classical Potential Theory and Martingale Theory705
1.Correspondence between Classical Potential Theory and Martingale Theory705
2.Relations between Decomposition Components of S in Potential Theory and Martingale Theory706
3.The Classes Lp and D706
4.PWB-Related Conditions on h-Harmonic Functions and on Martingales707
5.Class D Property versus Quasi-Boundedness708
6.A Condition for Quasi-Boundedness709
7.Singularity of an Element of S+ m710
8.The Singular Component of an Element of S+711
9.The Class Spqb712
10.The Class Sps714
11.Lattice Theoretic Analysis of the Composition of an h-Superharmonic Function with an h-Brownian Motion715
12.A Decomposition of S+ ms(Potential Theory Context)716
13.Continuation of Section 11717
Chapter Ⅱ Brownian Motion and the PWB Method719
1.Context of the Problem719
2.Probabilistic Analysis of the PWB Method720
3.PWBh Examples723
4.Tail σ Algebras in the PWBh Context725
Chapter Ⅲ Brownian Motion on the Martin Space727
1.The Structure of Brownian Motion on the Martin Space727
2.Brownian Motions from Martin Boundary Points(Notation of Section 1)728
3.The Zero-One Law at a Minimal Martin Boundary Point and the Probabilistic Formulation of the Minimal-Fine Topology(Notation of Section 1)730
4.The Probabilistic Fatou Theorem on the Martin Space732
5.Probabilistic Approach to Theorem 1.XI.4(c)and Its Boundary Counterparts733
6.Martin Representation of Harmonic Functions in the Parabolic Context735
Appendixes741
Appendix Ⅰ Analytic Sets741
1.Pavings and Algebras of Sets741
2.Suslin Schemes741
3.Sets Analytic over a Product Paving742
4.Analytic Extensions versus σ Algebra Extensions of Pavings743
5.Projection Characterization A(y)743
6.The Operation A(A)744
7.Projections of Sets in Product Pavings744
8.Extension of a Measurability Concept to the Analytic Operation Context745
9.The Gδ Sets of a Complete Metric Space745
10.Polish Spaces746
11.The Baire Null Space746
12.Analytic Sets747
13.Analytic Subsets of Polish Spaces748
Appendix Ⅱ Capacity Theory750
1.Choquet Capacities750
2.Sierpinski Lemma750
3.Choquet Capacity Theorem751
4.Lusin's Theorem751
5.A Fundamental Example of a Choquet Capacity752
6.Strongly Subadditive Set Functions752
7.Generation of a Choquet Capacity by a Positive Strongly Subadditive Set Function753
8.Topological Precapacities755
9.Universally Measurable Sets756
Appendix Ⅲ Lattice Theory758
1.Introduction758
2.Lattice Definitions758
3.Cones758
4.The Specific Order Generated by a Cone759
5.Vector Lattices760
6.Decomposition Property of a Vector Lattice762
7.Orthogonality in a Vector Lattice762
8.Bands in a Vector Lattice762
9.Projections on Bands763
10.The Orthogonal Complement of a Set764
11.The Band Generated by a Single Element764
12.Order Convergence765
13.Order Convergence on a Linearly Ordered Set766
Appendix Ⅳ Lattice Theoretic Concepts in Measure Theory767
1.Lattices of Set Algebras767
2.Measurable Spaces and Measurable Functions767
3.Composition of Functions768
4.The Measure Lattice of a Measurable Space769
5.The σ Finite Measure Lattice of a Measurable Space(Notation of Section 4)771
6.The Hahn and Jordan Decompositions772
7.The Vector Lattice Mσ772
8.Absolute Continuity and Singularity773
9.Lattices of Measurable Functions on a Measure Space774
10.Order Convergence of Families of Measurable Functions775
11.Measures on Polish Spaces777
12.Derivates of Measures778
Appendix Ⅴ Uniform Integrability779
Appendix Ⅵ Kernels and Transition Functions781
1.Kernels781
2.Universally Measurable Extension of a Kernel782
3.Transition Functions782
Appendix Ⅶ Integral Limit Theorerns785
1.An Elementary Limit Theorem785
2.Ratio Integral Limit Theorems786
3.A One-Dimensional Ratio Integral Limit Theorem786
4.A Ratio Integral Limit Theorem Involving Convex Variational Derivates788
Appendix Ⅷ Lower Semicontinuous Functions791
1.The Lower Sernicontinuous Smoothing of a Function791
2.Suprema of Families of Lower Semicontinuous Functions791
3.Choquet Topological Lemma792
Historical Notes793
Part 1793
Part 2806
Part 3815
Appendixes816
Bibliography819
Notation Index827
Index829
热门推荐
- 1991285.html
- 452927.html
- 1277406.html
- 2011759.html
- 3412357.html
- 856765.html
- 270996.html
- 1608258.html
- 1966144.html
- 1685651.html
- http://www.ickdjs.cc/book_3643583.html
- http://www.ickdjs.cc/book_2361304.html
- http://www.ickdjs.cc/book_1630068.html
- http://www.ickdjs.cc/book_3475829.html
- http://www.ickdjs.cc/book_1254382.html
- http://www.ickdjs.cc/book_2524436.html
- http://www.ickdjs.cc/book_3739826.html
- http://www.ickdjs.cc/book_112315.html
- http://www.ickdjs.cc/book_3385587.html
- http://www.ickdjs.cc/book_61919.html