图书介绍
随机分析应用导论2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 世界图书出版公司 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506266032
- 出版时间:2004
- 标注页数:321页
- 文件大小:105MB
- 文件页数:334页
- 主题词:
PDF下载
下载说明
随机分析应用导论PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Preliminaries From Calculus1
1.1 Continuous and Differentiable Functions1
1.2 Right and Left-Continuous Functions2
1.3 Variation of a Function5
1.4 Riemann Integral10
1.5 Stieltjes Integral11
1.6 Differentials and Integrals15
1.7 Taylor's Formula and other results16
2 Concepts of Probability Theory23
2.1 Discrete Probability Model23
2.2 Continuous Probability Model30
2.3 Expectation and Lebesgue Integral35
2.4 Transforms and Convergence39
2.5 Independence and Conditioning40
2.6 Stochastic Processes in Continuous Time46
3 Basic Stochastic Processes55
3.1 Brownian Motion56
3.2 Brownian Motion as a Gaussian Process58
3.3 Properties of Brownian Motion Paths61
3.4 Three Martingales of Brownian Motion63
3.5 Markov Property of Brownian Motion65
3.6 Exit Times and Hitting Times68
3.7 Maximum and Minimum of Brownian Motion70
3.8 Distribution of Hitting Times72
3.9 Reflection Principle and Joint Distributions73
3.10 Zeros of Brownian Motion.Arcsine Law74
3.11 Size of Increments of Brownian Motion77
3.12 Brownian Motion in Higher Dimensions78
3.13 Random Walk80
3.14 Stochastic Integral in Discrete Time81
3.15 Poisson Process82
3.16 Exercises85
4 Brownian Motion Calculus87
4.1 Definition of It? Integral87
4.2 It? integral process95
4.3 It?'s Formula for Brownian motion99
4.4 Stochastic Differentials and It? Processes102
4.5 It?'s formula for functions of two variables109
4.6 Stochastic Exponential111
4.7 It? Processes in Higher Dimensions112
4.8 Exercises114
5 Stochastic Differential Equations117
5.1 Definition of Stochastic Differential Equations117
5.2 Strong Solutions to SDE's120
5.3 Solutions to Linear SDE's121
5.4 Existence and Uniqueness of Strong Solutions125
5.5 Markov Property of Solutions126
5.6 Weak Solutions to SDE's128
5.7 Existence and Uniqueness of Weak Solutions130
5.8 Backward and Forward Equations134
5.9 Exercises137
6 Diffusion Processes139
6.1 Martingales and Dynkin's formula139
6.2 Calculation of Expectations and PDE's143
6.3 Homogeneous Diffusions145
6.4 Exit Times From an Interval148
6.5 Representation of Solutions of PDE's152
6.6 Explosion153
6.7 Recurrence and Transience155
6.8 Diffusion on an Interval156
6.9 Stationary Distributions157
6.10 Multidimensional SDE's160
6.11 Exercises167
7 Martingales169
7.1 Definitions169
7.2 Uniform Integrability171
7.3 Martingale Convergence173
7.4 Optional Stopping175
7.5 Localization.Local Martingales177
7.6 Quadratic Variation of Martingales180
7.7 Martingale Inequalities182
7.8 Continuous martingales184
7.9 Change of Time in SDE's185
7.10 Martingale Representations187
7.11 Exercises189
8 Calculus For Semimartingales191
8.1 Semimartingales191
8.2 Quadratic Variation and Covariation192
8.3 Predictable Processes194
8.4 Doob-Meyer Decomposition195
8.5 Definition of Stochastic Integral196
8.6 Properties of Stochastic Integrals199
8.7 It?'s Formula:continuous case200
8.8 Local Times202
8.9 Stochastic Exponential203
8.10 Compensators and Sharp Bracket Process207
8.11 It?'s Formula:general case212
8.12 Elements of the General Theory214
8.13 Exercises217
9 Pure Jump Processes219
9.1 Definitions219
9.2 Pure Jump Process Filtration220
9.3 It?'s Formula for Processes of Finite Variation221
9.4 Counting Processes222
9.5 Markov Jump Processes229
9.6 Stochastic equation for Markov Jump Processes231
9.7 Explosions in Markov Jump Processes233
9.8 Exercises234
10 Change of Probability Measure237
10.1 Change of Measure for Random Variables237
10.2 Equivalent Probability Measures238
10.3 Change of Measure for Processes240
10.4 Change of Drift in Diffusion243
10.5 Change of Wiener Measure244
10.6 Change of Measure for Point Processes245
10.7 Likelihood Ratios247
10.8 Exercises250
11 Applications in Finance253
11.1 Financial Derivatives and Arbitrage253
11.2 A Finite Market Model256
11.3 Semimartingale Market Model260
11.4 Diffusion and Black-Scholes Model265
11.5 Interest Rates Models273
11.6 Options,Caps,Floors,Swaps and Swaptions281
11.7 Exercises283
12 Applications in Biology289
12.1 Branching Diffusion289
12.2 Wright-Fisher Diffusion292
12.3 Birth-Death Processes293
12.4 Exercises297
13 Applications in Engineering and Physics299
13.1 Filtering299
13.2 Stratanovich Calculus304
13.3 Random Oscillators305
13.4 Exercises313
References315
热门推荐
- 3015861.html
- 2156541.html
- 224582.html
- 1499124.html
- 940828.html
- 3526090.html
- 3112433.html
- 482002.html
- 3479763.html
- 990827.html
- http://www.ickdjs.cc/book_417677.html
- http://www.ickdjs.cc/book_3390431.html
- http://www.ickdjs.cc/book_3736756.html
- http://www.ickdjs.cc/book_416735.html
- http://www.ickdjs.cc/book_838369.html
- http://www.ickdjs.cc/book_1467447.html
- http://www.ickdjs.cc/book_3797581.html
- http://www.ickdjs.cc/book_2507367.html
- http://www.ickdjs.cc/book_818919.html
- http://www.ickdjs.cc/book_1897802.html