图书介绍
概率论和随机过程 原书第2版 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)凯罗勒夫著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510044106
- 出版时间:2012
- 标注页数:358页
- 文件大小:71MB
- 文件页数:369页
- 主题词:概率论-高等学校-教材-英文;随机过程-高等学校-教材-英文
PDF下载
下载说明
概率论和随机过程 原书第2版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Probability Theory3
1 Random Variables and Their Distributions3
1.1 Spaces of Elementary Outcomes,σ-Algebras,and Measures3
1.2 Expectation and Variance of Random Variables on a Discrete Probability Space9
1.3 Probability of a Union of Events14
1.4 Equivalent Formulations of σ-Additivity,Borel σ-Algebras and Measurability16
1.5 Distribution Functions and Densities19
1.6 Problems21
2 Sequences of Independent Trials25
2.1 Law of Large Numbers and Applications25
2.2 de Moivre-Laplace Limit Theorem and Applications32
2.3 Poisson Limit Theorem34
2.4 Problems35
3 Lebesgue Integral and Mathematical Expectation37
3.1 Definition of the Lebesgue Integral37
3.2 Induced Measures and Distribution Functions41
3.3 Types of Measures and Distribution Functions45
3.4 Remarks on the Construction of the Lebesgue Measure47
3.5 Convergence of Functions,Their Integrals,and the Fubini Theorem48
3.6 Signed Measures and the Radon-Nikodym Theorem52
3.7 Lp Spaces54
3.8 Monte Carlo Method55
3.9 Problems56
4 Conditional Probabilities and Independence59
4.1 Conditional Probabilities59
4.2 Independence of Events,σ-Algebras,and Random Variables60
4.3 π-Systems and Independence62
4.4 Problems64
5 Markov Chains with a Finite Number of States67
5.1 Stochastic Matrices67
5.2 Markov Chains68
5.3 Ergodic and Non-Ergodic Markov Chains71
5.4 Law of Large Numbers and the Entropy of a Markov Chain74
5.5 Products of Positive Matrices76
5.6 General Markov Chains and the Doeblin Condition78
5.7 Problems82
6 Random Walks on the Lattice Zd85
6.1 Recurrent and Transient Random Walks85
6.2 Random Walk on Z and the Reflection Principle88
6.3 Arcsine Law90
6.4 Gambler's Ruin Problem93
6.5 Problems98
7 Laws of Large Numbers101
7.1 Definitions,the Borel-Cantelli Lemmas,and the Kolmogorov Inequality101
7.2 Kolmogorov Theorems on the Strong Law of Large Numbers103
7.3 Problems106
8 Weak Convergence of Measures109
8.1 Definition of Weak Convergence109
8.2 Weak Convergence and Distribution Functions111
8.3 Weak Compactness,Tightness,and the Prokhorov Theorem113
8.4 Problems116
9 Characteristic Functions119
9.1 Definition and Basic Properties119
9.2 Characteristic Functions and Weak Convergence123
9.3 Gaussian Random Vectors126
9.4 Problems128
10 Limit Theorems131
10.1 Central Limit Theorem,the Lindeberg Condition131
10.2 Local Limit Theorem135
10.3 Central Limit Theorem and Renormalization Group Theory139
10.4 Probabilities of Large Deviations143
10.5 Other Limit Theorems147
10.6 Problems151
11 Several Interesting Problems155
11.1 Wigner Semicircle Law for Symmetric Random Matrices155
11.2 Products of Random Matrices159
11.3 Statistics of Convex Polygons161
Part Ⅱ Random Processes171
12 Basic Concepts171
12.1 Definitions of a Random Process and a Random Field171
12.2 Kolmogorov Consistency Theorem173
12.3 Poisson Process176
12.4 Problems178
13 Conditional Expectations and Martingales181
13.1 Conditional Expectations181
13.2 Properties of Conditional Expectations182
13.3 Regular Conditional Probabilities184
13.4 Filtrations,Stopping Times,and Martingales187
13.5 Martingales with Discrete Time190
13.6 Martingales with Continuous Time193
13.7 Convergence of Martingales195
13.8 Problems199
14 Markov Processes with a Finite State Space203
14.1 Definition of a Markov Process203
14.2 Infinitesimal Matrix204
14.3 A Construction of a Markov Process206
14.4 A Problem in Queuing Theory208
14.5 Problems209
15 Wide-Sense Stationary Random Processes211
15.1 Hilbert Space Generated by a Stationary Process211
15.2 Law of Large Numbers for Stationary Random Processes213
15.3 Bochner Theorem and Other Useful Facts214
15.4 Spectral Representation of Stationary Random Processes216
15.5 Orthogonal Random Measures218
15.6 Linear Prediction of Stationary Random Processes220
15.7 Stationary Random Processes with Continuous Time228
15.8 Problems229
16 Strictly Stationary Random Processes233
16.1 Stationary Processes and Measure Preserving Transformations233
16.2 Birkhoff Ergodic Theorem235
16.3 Ergodicity,Mixing,and Regularity238
16.4 Stationary Processes with Continuous Time243
16.5 Problems244
17 Generalized Random Processes247
17.1 Generalized Functions and Generalized Random Processes247
17.2 Gaussian Processes and White Noise251
18 Brownian Motion255
18.1 Definition of Brownian Motion255
18.2 The Space C([0,∞))257
18.3 Existence of the Wiener Measure,Donsker Theorem262
18.4 Kolmogorov Theorem266
18.5 Some Properties of Brownian Motion270
18.6 Problems273
19 Markov Processes and Markov Families275
19.1 Distribution of the Maximum of Brownian Motion275
19.2 Definition of the Markov Property276
19.3 Markov Property of Brownian Motion280
19.4 The Augmented Filtration281
19.5 Definition of the Strong Markov Property283
19.6 Strong Markov Property of Brownian Motion285
19.7 Problems288
20 Stochastic Integral and the Ito Formula291
20.1 Quadratic Variation of Square-Integrable Martingales291
20.2 The Space of Integrands for the Stochastic Integral295
20.3 Simple Processes297
20.4 Deftnition and Basic Properties of the Stochastic Integral298
20.5 Further Properties of the Stochastic Integral301
20.6 Local Martingales303
20.7 Ito Formula305
20.8 Problems310
21 Stochastic Differential Equations313
21.1 Existence of Strong Solutions to Stochastic Differential Equations313
21.2 Dirichlet Problem for the Laplace Equation320
21.3 Stochastic Difrerential Equations and PDE's324
21.4 Markov Property of Solutions to SDE's333
21.5 A Problem in Homogenization336
21.6 Problems340
22 Gibbs Random Fields343
22.1 Definition of a Gibbs Random Field343
22.2 An Example of a Phase Transition346
Index349
热门推荐
- 224265.html
- 2285707.html
- 1210037.html
- 3431467.html
- 3253209.html
- 1596640.html
- 801710.html
- 2265552.html
- 922846.html
- 1472605.html
- http://www.ickdjs.cc/book_863117.html
- http://www.ickdjs.cc/book_2238961.html
- http://www.ickdjs.cc/book_3853114.html
- http://www.ickdjs.cc/book_2317262.html
- http://www.ickdjs.cc/book_208689.html
- http://www.ickdjs.cc/book_3251078.html
- http://www.ickdjs.cc/book_1324248.html
- http://www.ickdjs.cc/book_948222.html
- http://www.ickdjs.cc/book_3358059.html
- http://www.ickdjs.cc/book_452865.html