图书介绍

Electromagnetic fields2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

Electromagnetic fields
  • energy 著
  • 出版社: Wiley
  • ISBN:
  • 出版时间:1972
  • 标注页数:781页
  • 文件大小:235MB
  • 文件页数:806页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Electromagnetic fieldsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter One: Introduction to Fields and Field Theory1

1.1.Types of Fields2

1.2.Typical Field Behavior2

1.2.1.The Field Approach -A Temperature Field Example3

1.3.Electromagnetic Fields, Energy, and Waves- A Preview7

Chapter Two: Electromagnetic Field Laws in Free Space10

2.1.Basic Postulates and Definitions11

2.2.Charge Density and Current Density14

2.3.Postulate Ⅳ-The Field Equations in Free Space16

2.3.1.Line, Surface, and Volume Integrals19

2.3.2.The Physical Significance of the Field Equations24

2.4.Applications of the Integral Field Laws28

2.4.1.The Point-Charge Field28

2.4.2.A Line of Charge30

2.4.3.A Line of Current32

2.5.Summary and Conclusions34

2.6.Selected References35

Problems36

Chapter Three: Vector Analysis41

3.1.Scalars and Vectors41

3.2.Vector Addition and Subtraction42

3.3.Orthogonal Coordinate Systems43

3.3.1.Cartesian Coordinates45

3.3.2.Circular-Cylindrical Coordinates46

3.3.3.Spherical Coordinates49

3.4.The Scalar or Dot Product52

3.5.The Vector or Cross Product55

3.6.Line, Surface, and Volume Integration59

3.6.1.Differential Lengths, Surfaces, and Volumes60

3.6.2.Evaluation of Line Integrals65

3.6.3.Evaluation of Surface Integrals71

3.6.4.Evaluation of Volume Integrals74

3.7.The Gradient and the Directional Derivative of a Scalar Field76

3.7.1.Definition of the Gradient76

3.7.2.Examples and Properties of the Gradient79

3.7.3.Evaluation of the Gradient82

3.8.The Divergence and Gauss' Theorem85

3.8.1.Definition and Evaluation85

3.8.2.Properties and Examples of the Divergence92

3.8.3.Gauss' Theorem93

3.9.The Curl and Stokes' Theorem95

3.9.1.Definition and Evaluation95

3.9.2.Physical Properties of the Curl-The Curl Meter102

3.9.3.Mathematical Properties of the Curl-Stokes' Theorem106

3.10.Summary and Conclusions109

3.11.Selected References111

Problems111

Chapter Four: The Differential Field Laws115

4.1.The Differential Field Laws in Free Space115

4.1.1.The Divergence Relations116

4.1.2.The Curl Relations- Maxwell's Equations117

4.1.3.The Significance of the Differential Field Laws118

4.2.Surface Charge Density and Surface Current Density119

4.3.Boundary Conditions122

4.3.1.Discontinuities in the Normal Components123

4.3.2.Tangential Field Components126

4.3.3.The Signifi cance of the Boundary Conditions127

4.4.Some Direct Applications of the Differential Laws128

4.4.1.A Spherical Cloud of Charge128

4.4.2.Shell of Charge131

4.4.3.Cylinder of Current134

4.4.4.Shell of Current137

4.5.Electromagnetic Fields in Conductors140

4.5.1.The Macroscopic Model of Conducting Material140

4.5.2.The Differential Laws in Conductors141

4.6.Preview of the “Field Approach”-Some Mathematically Acceptable Static Fields142

4.6.1.The Point-Charge Field143

4.6.2.A Uniform E Field145

4.6.3.A Uniform H Field146

4.7.Summary and Conclusions147

Problems148

Chapter Five: Static Fields Ⅰ153

5.1.The Static Field Laws154

5.2.Electrostatic Fields155

5.2.1.The Coulomb Field of Known Stationary Charges155

5.2.2.Examples of Static E Fields159

5.2.2.1.An Electric Dipole159

5.2.2.2.A Ring of Charge162

5.2.2.3.A Semicircular Ring of Charge165

5.3.The Differential Equations for the Scalar Potential167

5.3.1.Poisson's Equation and Laplace's Equation167

5.3.2.The Particular Solution of Poisson's Equation169

5.3.3.The Need for a Homogeneous Solution170

5.4.Physical Properties of Laplace's Equation172

5.4.1.A Wire Grid Analog172

5.4.2.An Elastic Membrane Analog175

5.5.Mathematical Properties of Laplace's Equation179

5.5.1.A Maximum-Minimum Theorem179

5.5.2.The Uniqueness Theorem179

5.6.Solutions of Laplace's Equation in Rectangular Coordinates182

5.6.1.Trivial Solutions183

5.6.2.General Solutions184

5.6.3.Two-Dimensional Solutions187

5.7.Examples of Electrostatic Fields in Cartesian Coordinates187

5.7.1.A Parallel-Plate Capacitor188

5.7.2.A Rectangular Model of a Resistor192

5.7.3.A Rectangular Conducting Sheet196

5.7.4.A Rectangular Air Slot202

5.7.4.1.Sinusoidal Excitation205

5.7.4.2.Uniform Excitation208

5.7.4.3.Arbitrary Excitation213

5.8.Summary and Conclusions213

Problems215

Chapter Six: Static Fields Ⅱ223

6.1.Two-Dimensional Solutions of Laplace's Equation in Cylindrical Coordinates223

6.1.1.Trivial Solutions224

6.1.2.General Solutions226

6.2.Solutions of Laplace's Equation in Spherical Coordinates231

6.2.1.Trivial Solutions232

6.2.2.General Solutions233

6.3.Summary of the Solutions of Laplace's Equation236

6.4.Electrostatic Field Examples237

6.4.1.Electric Dipole Within a Conducting Sphere237

6.4.1.1.Uncharged Shell238

6.4.1.2.Charged Shell243

6.4.1.3.Arbitrary Charge Distribution Within the Shell246

6.4.2.A Conducting Sphere in a Uniform Field249

6.4.3.A Conducting Cylinder in a Uniform Current254

6.4.3.1.Case A: σ1 = σ2257

6.4.3.2.Case B: σ2 = 0 =σ(σ,1>0)257

6.4.3.3.Case C: σ2 = ∞ (0 < σ1 <∞)260

6.4.3.4.Case D: General Values of v1 and σ2263

6.4.4.A Circular Resistor with Fringing264

6.4.4.1.The Field in the Conductor and the Source264

6.4.4.2.The Outside (Fringing) Field266

6.5.Static Magnetic Fields270

6.5.1.The Magnetic Vector Potential271

6.5.2.The Magnetic Field of Known Fixed Currents272

6.6.The Scalar Magnetic Potential275

6.6.1.Currents Within V'-the Particular Solution276

6.6.2.The Homogeneous Solution and the Scalar Magnetic Potential276

6.6.3.Boundary Conditions and Uniqueness277

6.7.Examples of Static H Fields278

6.7.1.A Single-Turn Inductor278

6.7.2.A Spherical Coil280

6.8.Dipole Layer Analog of Static Current Loops287

6.8.1.A Single-Turn Current Loop288

6.8.2.The Dipole Layer Analog291

6.8.3.A Current Loop Dipole Field294

6.8.4.A Closely Wound Solenoid297

6.9.Far-Field Potentials and the Multipole Expansion303

6.9.1.The Zero-Order Approximation304

6.9.2.Higher Order Approximations305

6.9.3.The Multipole Expansion308

6.10.Summary and Conclusions314

6.11.Selected References316

Problems317

Chapter Seven: Macroscopic Fields in Matter326

7.1.Microscopic and Macroscopic Fields in Matter326

7.2.The Macroscopic Model of Polarized Matter327

7.2.1.The Mechanics of Polarization328

7.2.2.Polarization Density330

7.2.3.Polarization Charge Density and Current Density (Volume Effects)331

7.2.4.Polarization Surface Effects334

7.3.The Electromagnetic Field Laws in Dielectric Material336

7.3.1.The E-P Form of the Field Laws in Polarized Matter336

7.3.2.The E-D Form of the Field Laws in Matter338

7.4.Examples of Permanently Polarized Bodies340

7.4.1.A Permanently Polarized Slab340

7.4.1.1.Case 1: Uniform Polarization340

7.4.1.2.Case 2: Nonuniform Polarization343

7.4.2.A Permanently Polarized Block346

7.4.3.A Uniformly Polarized Sphere349

7.5.Examples of Systems With Specified Permittivity ?355

7.5.1.A Sphere of Uniform Permittivity in a Uniform Field355

7.5.2.A Parallel-Plate Capacitor Filled with a Uniform ? Material360

7.5.3.A Parallel-Plate Capacitor Filled with Nonuni-form ? Material364

7.5.4.A Parallel-Plate Capacitor with Layers of Dielectric Slabs368

7.6.The Macroscopic Model of Magnetized Matter370

7.6.1.The Physical Basis of Magnetism370

7.6.2.The Magnetization Vector372

7.7.The Amperian-Current Model372

7.7.1.The Amperian-Current Density373

7.7.2.The Amperian-Current Form of the Field Laws in Matter376

7.8.The Magnetic-Charge Model377

7.8.1.The Concept of Magnetic Charge377

7.8.2.Magnetic Charge and Magnetic-Charge Density378

7.9.The B-D Form of the Field Laws in Matter382

7.10.An Example of the Fields in Magnetic Material385

7.10.1.A Permanently Magnetized Cylinder385

7.10.1.1.Use of Amperian-Current Model385

7.10.1.2.Use of Magnetic-Charge Model388

7.11.The Constituent Relations392

7.12.Summary and Conclusions396

7.13.Selected References398

Problems398

Chapter Eight: Electromagnetic Energy and Power404

8.1.Electromagnetic Force on Moving Charges404

8.2.Power Supplied to Moving Charges405

8.3.Conservation of Energy- Poynting's Theorem407

8.3.1.Differential Form of Poynting's Theorem407

8.3.2.Integral Form of Poynting's Theorem410

8.3.3.Some Difficulties in the Identification of S and w411

8.4.The Energy Stored in Electric and Magnetic Fields412

8.4.1.Electric Energy Stored in an Air-Filled Capacitor413

8.4.2.Magnetic Energy Stored in an Air-Filled Inductor414

8.5.Power Absorbed by Matter416

8.5.1.Polarization, Magnetization, and Conduction Power Densities416

8.5.2.Poynting's Theorem in Matter418

8.6.Static Power Flow and Dissipation421

8.6.1.Static Power Flow in a Resistor422

8.6.1.1.The Static E and H Fields423

8.6.1.2.Poynting's Vector and Power Flow426

8.6.2.The Static Power Flow in a Rectangular Resistor428

8.6.2.1.Resistor with Battery at Infinity428

8.6.2.2.Resistor with Battery Distributed Along One Edge431

8.6.3.The Static Power Flow in an Electron Beam434

8.6.3.1.Dynamics of the Electron Beam434

8.6.3.2.The Static E and H Fields437

8.6.3.3.Poynting's Vector and the Static Power439

8.7.Polarization Energy and Electric Energy441

8.7.1.The Polarization Energy Density441

8.7.2.The Electric Energy Density444

8.7.3.Total Electric Energy445

8.7.4.Examples of Stored Electric Energy-an ? Filled Capacitor446

8.8.Magnetization Energy and Magnetic Energy448

8.8.1.The Magnetization Energy Density448

8.8.2.The Magnetic Energy Density449

8.8.3.Total Magnetic Energy450

8.8.4.Examples of Stored Magnetic Energy451

8.8.4.1.A Single-Turn Inductor451

8.8.4.2.A General n-Turn Inductor Coil453

8.9.Summary and Conclusions455

8.10.Selected References457

Problems458

Chapter Nine: Time-Varying Fields-Low-Frequency Behavior462

9.1.The Basic Field Laws462

9.2.Static Versus Time-Varying Fields464

9.2.1.E and H Field Coupling464

9.2.2.The Physical Significance of Low-Frequency Fields465

9.3.An Exact Wave Solution467

9.3.1.A Simple Wave System467

9.3.2.One-Dimensional Wave Equations468

9.3.3.Sinusoidal Steady-State Solutions470

9.3.4.The Time-Varying Capacitor Field472

9.3.5.The Low-Frequency Response474

9.4.A Power Series Approach to Time-Varying Fields480

9.4.1.General Field Dependence on Frequency481

9.4.2.The Power Series in ω482

9.4.3.The Power Series Without ω488

9.5.Examples of Quasi-Static Fields-The Low-Frequency Response of a Capacitor490

9.5.1.A Parallel-Plate Capacitor490

9.5.1.1.Reference Choice490

9.5.1.2.The Zero-Order Field492

9.5.1.3.The First-Order Field495

9.5.1.4.The Quasi-Static Solution498

9.5.1.5.Second-Order Fields and the Validity of Quasi-Statics500

9.5.1.6.Third-Order Fields and Beyond505

9.6.The Low-Frequency Response of Inductors506

9.6.1.A Single-Turn Inductor507

9.6.1.1.The Zero-Order Field507

9.6.1.2.The First-Order Field508

9.6.1.3.The Quasi-Static Response509

9.6.1.4.EMF and Lenz's Law512

9.6.1.5.Second-Order Fields and Beyond515

9.6.2.An N-Turn Coil517

9.6.2.1.The Quasi-Static Field Without the Coil518

9.6.2.2.The Quasi-Static Field with the Coil519

9.6.2.3.The Physical Significance of the Conserva-tive E'(t) Field525

9.6.2.4.A Self-Excited N-Turn Coil528

9.7.The Frequency Response of a Resistor529

9.7.1.The Zero-Order Fields530

9.7.2.The First-Order Fields532

9.7.3.The Quasi-Static Response532

9.8.Circuit Theory as a Quasi-Static Approximation536

9.8.1.Kirchhoff's Circuit Laws from Field Theory537

9.8.2.The Circuit Concept of Power540

9.9.Summary and Conclusions543

Problems544

Chapter Ten: TEM Fields and Waves (Lossless Transmission Line Theory)548

10.1.Transverse Electromagnetic (TEM) Fields548

10.1.1.TEM Field Laws549

10.1.2.TEM Structures- Perfectly Conducting Transmission Lines550

10.1.3.TEM Boundary Conditions on Perfectly Conducting Lines551

10.2.The Transmission Line Model552

10.2.1.Voltage and Current Definitions553

10.2.2.Normalized Transverse Fields554

10.2.3.The Transmission Line Equations556

10.2.4.Transmission Line Parameters557

10.2.4.1.Capacitance per Unit Length557

10.2.4.2.Inductance per Unit Length558

10.2.4.3.Shunt Conductance per Unit Length559

10.3.The Transmission Line as a Distributed Circuit559

10.3.1.Transmission Line Equations from the Distributed Circuit Model561

10.3.2.Power and Energy- Poynting's Theorem562

10.4.Scalar Wave Motion on Lossless Transmission Lines (Time Domain Analysis)563

10.4.1.Time-Domain Solution563

10.4.2.Forward and Backward Traveling Waves566

10.5.Sinusoidal Waves on Lossless Transmission Lines(Frequency Domain Analysis)569

10.5.1.Frequency-Domain Solution570

10.5.2.Forward and Backward Traveling Waves571

10.5.2.1.Wave Motion and Phase Velocity571

10.5.2.2.Energy and Power573

10.5.2.3.Input Impedance and Source Conditions575

10.5.2.4.Load and Source Boundary Conditions576

10.5.3.Complete Standing Waves578

10.5.3.1.A Short-Circuited Line578

10.5.3.2.Energy and Power579

10.5.3.3.Input Impedance and Source Conditions581

10.5.3.4.Other Standing-Wave Systems582

10.6.Complex Power (On Transmission Lines)585

10.6.1.Complex Power in Circuit Theory585

10.6.2.Complex Power in Transmission Line Theory587

10.6.3.The Complex Poynting Theorem (for Trans-mission Lines)588

10.6.4.Examples of Complex Power Flow590

10.7.General Impedance Termination591

10.7.1.Load Conditions and the Reflection Coefficient592

10.7.2.Input Impedance and Source Conditions594

10.7.3.Generalized Reflection Coefficient595

10.7.4.Standing-Wave Measurements and the Γ-Plane596

10.7.5.The Smith Chart600

10.7.5.1.Usefulness of the Smith Chart601

10.8.Summary and Conclusions604

Problems605

Chapter Eleven: Plane Waves in Lossless Media612

11.1.Uniform Plane Waves-Time-Domain Solution612

11.1.1.Nature of Uniform Plane Wave (UPW) Solutions612

11.1.2.z-Directed Uniform Plane Waves (In Time Domain)613

11.1.3.Fields and Power in Uniform Plane Waves615

11.2.Fields and Power in the Frequency Domain620

11.2.1.Use of Complex Vectors620

11.2.2.Elliptical, Circular, and Linear Polarization621

11.2.3.The Complex Poynting Theorem625

11.3.Uniform Plane Waves in the Frequency Domain628

11.3.1.X- Polarized Waves628

11.3.2.Nature of the Solutions629

11.3.3.Role of Uniform Plane Waves632

11.4.Normal Incidence of a Uniform Plane Wave632

11.4.1.Normal Incidence on a Perfect Conductor632

11.4.2.Normal Incidence on a Lossless Dielectric636

11.4.3.Normal Incidence on Multiple Dielectrics640

11.5.Oblique Incidence of a Uniform Plane Wave642

11.5.1.Components of Uniform Plane-Wave Motion643

11.5.2.Phase, Wavelength, and Wave Velocity646

11.5.3.Geometry of Oblique Incidence650

11.5.4.Oblique Incidence on a Perfect Conductor651

11.5.4.1.Incident and Reflected Wave Solutions651

11.5.4.2.Transmission Line Analogy656

11.5.5.Oblique Incidence on an Interface Between Lossless Dielectrics659

11.5.5.1.Polarization Parallel to the Boundary659

11.5.5.2.Polarization in the Plane of Incidence663

11.5.5.3.Brewster's (Polarizing) Angle665

11.5.5.4.Critical Reflection667

11.6.Nonuniform Plane Waves672

11.6.1.Nature of the Solution672

11.6.2.Phase Delay and Attenuation674

11.6.3.TE and TM Plane Waves675

11.6.4.Relationship Between Uniform and Nonuniform Plane Waves678

11.7.Guided Waves -Lossless Rectangular Waveguides679

11.7.1.Basic Equations681

11.7.2.TE and TM Modes682

11.7.3.TEm,n Modes683

11.7.3.1.General Solution683

11.7.3.2.Waveguide Boundary Conditions685

11.7.3.3.TEm,n Waves685

11.7.4.TMm,n Modes687

11.7.5.Properties of Waves in Guides688

11.7.6.Resonant Cavities693

11.8.Summary and Conclusions694

Problems696

Chapter Twelve: Radiation702

12.1.Definition of the Problem702

12.2.Basic Field Laws and Potentials703

12.2.1.Scalar and Vector Potentials704

12.2.2.Wave Equations705

12.2.3.General Wave Solutions-Use of Retarded Potentials705

12.3.Elemental Dipole Radiation708

12.3.1.Point-Source Fields708

12.3.2.The Electric-Dipole (TM) Solution710

12.3.3.Properties of the Dipole Field713

12.3.3.1.Wave Motion713

12.3.3.2.Wave Impedances714

12.3.3.3.Complex Poynting Vector and Radiated Power715

12.3.4.The Magnetic-Dipole (TE) Solution717

12.4.Physical Antennas722

12.4.1.Nature of the Problem722

12.4.2.The Physical Electric Dipole723

12.4.2.1.Details of the Solution723

12.4.2.2.Impedance Characteristics727

12.4.2.3.Radiation Characteristics732

12.4.3.A Half-Wave Antenna734

12.4.3.1.Details of the Solution734

12.4.3.2.Radiation Characteristics736

12.5.The Receiving Properties of a Dipole739

12.6.Dipole Arrays743

12.6.1.Element Factor and Array Factor743

12.6.2.A Two-Dipole Array746

12.6.3.An N-Dipole Array750

12.7.Summary and Conclusions753

Problems754

Appendix 1: Differential Operators in Orthogonal Coordinates758

Appendix 2: Summary of Mathematical Formulas760

Appendix 3: Solutions of Laplace's Equation in Cartesian, Cylindrical, and Spherical Coordinates762

Appendix 4: Uniform Plane Waves in Lossy Media763

Index775

热门推荐