图书介绍
MATHEMATICAL METHODS FOR PHYSICISTS A COMPREHENSIVE GUIDE SEVENTH EDITION2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- GEORGE B.ARFKEN,HANS J.WEBER AND FRANK E.HARRIS 著
- 出版社: ELSEVIER
- ISBN:0123846544
- 出版时间:2013
- 标注页数:1205页
- 文件大小:519MB
- 文件页数:1218页
- 主题词:
PDF下载
下载说明
MATHEMATICAL METHODS FOR PHYSICISTS A COMPREHENSIVE GUIDE SEVENTH EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Mathematical Preliminaries1
1.1 Infinite Series1
1.2 Series of Functions21
1.3 Binomial Theorem33
1.4 Mathematical Induction40
1.5 Operations on Series Expansions of Functions41
1.6 Some Important Series45
1.7 Vectors46
1.8 Complex Numbers and Functions53
1.9 Derivatives and Extrema62
1.10 Evaluation of Integrals65
1.11 Dirac Delta Function75
Additional Readings82
2 Determinants and Matrices83
2.1 Determinants83
2.2 Matrices95
Additional Readings121
3 Vector Analysis123
3.1 Review of Basic Properties124
3.2 Vectors in 3-D Space126
3.3 Coordinate Transformations133
3.4 Rotations in IR 3139
3.5 Differential Vector Operators143
3.6 Differential Vector Operators: Further Properties153
3.7 Vector Integration159
3.8 Integral Theorems164
3.9 Potential Theory170
3.10 Curvilinear Coordinates182
Additional Readings203
4 Tensors and Differential Forms205
4.1 Tensor Analysis205
4.2 Pseudotensors, Dual Tensors215
4.3 Tensors in General Coordinates218
4.4 Jacobians227
4.5 Differential Forms232
4.6 Differentiating Forms238
4.7 Integrating Forms243
Additional Readings249
5 Vector Spaces251
5.1 Vectors in Function Spaces251
5.2 Gram-Schmidt Orthogonalization269
5.3 Operators275
5.4 Self-Adjoint Operators283
5.5 Unitary Operators287
5.6 Transformations of Operators292
5.7 Invariants294
5.8 Summary—Vector Space Notation296
Additional Readings297
6 Eigenvalue Problems299
6.1 Eigenvalue Equations299
6.2 Matrix Eigenvalue Problems301
6.3 Hermitian Eigenvalue Problems310
6.4 Hermitian Matrix Diagonalization311
6.5 Normal Matrices319
Additional Readings328
7 Ordinary Differential Equations329
7.1 Introduction329
7.2 First-Order Equations331
7.3 ODEs with Constant Coefficients342
7.4 Second-Order Linear ODEs343
7.5 Series Solutions Frobenius’ Method346
7.6 Other Solutions358
7.7 Inhomogeneous Linear ODEs375
7.8 Nonlinear Differential Equations377
Additional Readings380
8 Sturm-Liouville Theory381
8.1 Introduction381
8.2 Hermitian Operators384
8.3 ODE Eigenvalue Problems389
8.4 Variation Method395
8.5 Summary, Eigenvalue Problems398
Additional Readings399
9 Partial Differential Equations401
9.1 Introduction401
9.2 First-Order Equations403
9.3 Second-Order Equations409
9.4 Separation of Variables414
9.5 Laplace and Poisson Equations433
9.6 Wave Equation435
9.7 Heat-Flow, or Diffusion PDE437
9.8 Summary444
Additional Readings445
10 Green’s Functions447
10.1 One-Dimensional Problems448
10.2 Problems in Two and Three Dimensions459
Additional Readings467
11 Complex Variable Theory469
11.1 Complex Variables and Functions470
11.2 Cauchy-Riemann Conditions471
11.3 Cauchy’s Integral Theorem477
11.4 Cauchy’s Integral Formula486
11.5 Laurent Expansion492
11.6 Singularities497
11.7 Calculus of Residues509
11.8 Evaluation of Deffinite Integrals522
11.9 Evaluation of Sums544
11.10 Miscellaneous Topics547
Additional Readings550
12 Further Topics in Analysis551
12.1 Orthogonal Polynomials551
12.2 Bernoulli Numbers560
12.3 Euler-Maclaurin Integration Formula567
12.4 Dirichlet Series571
12.5 Infinite Products574
12.6 Asymptotic Series577
12.7 Method of Steepest Descents585
12.8 Dispersion Relations591
Additional Readings598
13 Gamma Function599
13.1 Definitions, Properties599
13.2 Digamma and Polygamma Functions610
13.3 The Beta Function617
13.4 Stirling’s Series622
13.5 Riemann Zeta Function626
13.6 Other Related Functions633
Additional Readings641
14 Bessel Functions643
14.1 Bessel Functions of the First Kind, Jv (x)643
14.2 Orthogonality661
14.3 Neumann Functions, Bessel Functions of the Second Kind667
14.4 Hankel Functions674
14.5 Modified Bessel Functions, Iv (x) and Kv (x)680
14.6 Asymptotic Expansions688
14.7 Spherical Bessel Functions698
Additional Readings713
15 Legendre Functions715
15.1 Legendre Polynomials716
15.2 Orthogonality724
15.3 Physical Interpretation of Generating Function736
15.4 Associated Legendre Equation741
15.5 Spherical Harmonics756
15.6 Legendre Functions of the Second Kind766
Additional Readings771
16 Angular Momentum773
16.1 Angular Momentum Operators774
16.2 Angular Momentum Coupling784
16.3 Spherical Tensors796
16.4 Vector Spherical Harmonics809
Additional Readings814
17 Group Theory815
17.1 Introduction to Group Theory815
17.2 Representation of Groups821
17.3 Symmetry and Physics826
17.4 Discrete Groups830
17.5 Direct Products837
17.6 Symmetric Group840
17.7 Continuous Groups845
17.8 Lorentz Group862
17.9 Lorentz Covariance of Maxwell’s Equations866
17.10 Space Groups869
Additional Readings870
18 More Special Functions871
18.1 Hermite Functions871
18.2 Applications ofHermite Functions878
18.3 Laguerre Functions889
18.4 Chebyshev Polynomials899
18.5 Hypergeometric Functions911
18.6 Confluent Hypergeometric Functions917
18.7 Dilogarithm923
18.8 Elliptic Integrals927
Additional Readings932
19 Fourier Series935
19.1 General Properties935
19.2 Applications of Fourier Series949
19.3 Gibbs Phenomenon957
Additional Readings962
20 Integral Transforms963
20.1 Introduction963
20.2 Fourier Transform966
20.3 Properties of Fourier Transforms980
20.4 Fourier Convolution Theorem985
20.5 Signal-Processing Applications997
20.6 Discrete Fourier Transform1002
20.7 Laplace Transforms1008
20.8 Properties of Laplace Transforms1016
20.9 Laplace Convolution Theorem1034
20.10 Inverse Laplace Transform1038
Additional Readings1045
21 Integral Equations1047
21.1 Introduction1047
21.2 Some Special Methods1053
21.3 Neumann Series1064
21.4 Hilbert-Schmidt Theory1069
Additional Readings1079
22 Calculus of Variations1081
22.1 Euler Equation1081
22.2 More General Variations1096
22.3 Constrained Minima/Maxima1107
22.4 Variation with Constraints1111
Additional Readings1124
23 Probability and Statistics1125
23.1 Probability: Definitions, Simple Properties1126
23.2 Random Variables1134
23.3 Binomial Distribution1148
23.4 Poisson Distribution1151
23.5 Gauss’ Normal Distribution1155
23.6 Transformations ofRandom Variables1159
23.7 Statistics1165
Additional Readings1179
Index1181
热门推荐
- 3208931.html
- 1073920.html
- 2502090.html
- 3707936.html
- 720209.html
- 1252783.html
- 2263295.html
- 2131597.html
- 322318.html
- 1811144.html
- http://www.ickdjs.cc/book_508157.html
- http://www.ickdjs.cc/book_258652.html
- http://www.ickdjs.cc/book_3226569.html
- http://www.ickdjs.cc/book_650536.html
- http://www.ickdjs.cc/book_2084313.html
- http://www.ickdjs.cc/book_2080574.html
- http://www.ickdjs.cc/book_1774449.html
- http://www.ickdjs.cc/book_1412079.html
- http://www.ickdjs.cc/book_2028749.html
- http://www.ickdjs.cc/book_3390211.html