图书介绍
凝聚态物理的格林函数理论 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 王怀玉著 著
- 出版社: 北京:科学出版社
- ISBN:9787030334725
- 出版时间:2012
- 标注页数:589页
- 文件大小:20MB
- 文件页数:605页
- 主题词:格林函数-应用-凝聚态-物理学-英文
PDF下载
下载说明
凝聚态物理的格林函数理论 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Green's Functions in Mathematical Physics3
Chapter 1 Time-Independent Green's Functions3
1.1 Formalism3
1.2 Examples8
1.2.1 3-d case9
1.2.2 2-d case10
1.2.3 1-d case11
Chapter 2 Time-dependent Green's Functions13
2.1 First-Order Case of Time-Derivative13
2.2 Second-Order Case of Time-Derivative16
Part Ⅱ One-Body Green's Functions25
Chapter 3 Physical Significance of One-Body Green's Functions25
3.1 One-Body Green's Functions25
3.2 The Free-Particle Case27
3.2.1 3-d case28
3.2.2 2-d case28
3.2.3 1-d case29
Chapter 4 Green's Functions and Perturbation Theory31
4.1 Time-Independent Case31
4.2 Time-Dependent Case36
4.3 Application:Scattering Theory(E>0)40
4.4 Application:Bound States in Shallow Potential Wells(E<0)44
4.4.1 3-d space44
4.4.2 2-d space45
4.4.3 1-d space46
Chapter 5 Green's Functions for Tight-Binding Hamiltonians48
5.1 Tight-Binding Hamiltonians48
5.2 Lattice Green's functions52
5.2.1 1-d simple lattice53
5.2.2 2-d square lattice55
5.2.3 3-d simple cubic lattice58
Chapter 6 Single Impurity Scattering62
6.1 Formalism62
6. 2 Applications69
6.2.1 3-d case69
6.2.2 1-d case73
6.2.3 2-d case75
Chapter 7 Extension Theory for Lattice Green's Functions77
7.1 Introduction77
7.2 Extension of Hamiltonians in Powers79
7.3 Extension of Hamiltonians by Products84
7.4 Extension by Lattice Constructions90
Part Ⅲ Many-Body Green's Functions99
Chapter 8 Field Operators and Three Pictures99
8.1 Field Operators99
8.2 Three Pictures102
8.2.1 Schr?dinger picture102
8.2.2 Heisenberg picture102
8.2.3 Interaction picture103
8.2.4 The relation between interaction and Heisenberg pictures103
Chapter 9 Definition and Properties of Many-Body Green's Functions109
9.1 Definition of the Many-Body Green's Functions109
9.2 The Characteristics and Usage of the Green's Functions116
9.2.1 The Lehmann representation and spectral function116
9.2.2 Evaluation of physical quantities126
9.3 The Physical Significance of the Green's Functions132
9.3.1 Quasiparticles132
9.3.2 Physical interpretation of the Green's function and its poles136
9.4 The Green's functions of Noninteraction Systems141
9.4.1 Fermions(Bosons)141
9.4.2 Phonons143
Chapter 10 The Diagram Technique for Zero-Temperature Green's Functions147
10.1 Wick' Theorem147
10.2 Diagram Rules in Real Space152
10.2.1 Two-body interaction152
10.2.2 External field160
10.2.3 Electron-phonon interaction161
10.3 Diagram Rules in Momentum Space165
10.3.1 Two-body interaction166
10.3.2 External field168
10.3.3 Electron-phonon interaction170
10.4 Proper Self-Energies and Dyson's Equations172
Chapter 11 Definition and Properties of Matsubara Green's Functions183
11.1 The Imaginary-Time Picture183
11.2 The Definition and Properties of the Matsubara Green's Function186
11.2.1 The definition of the Matsubara Green's function186
11.2.2 A significant property of the Matsubara Green's functions187
11.3 The Analytical Continuation and Evaluation of Physical Quantities189
11.3.1 The analytical continuation189
11.3.2 Evaluation of physical quantities193
11.3.3 The Matsubara Green's functions for noninteracting systems194
11.3.4 The formulas for frequency sums195
Chapter 12 Diagram Technique for the Matsubara Green's Functions200
12.1 Wick's Theorem at Finite Temperature200
12.2 Diagram Rules in Real Space205
12.2.1 Two-body interaction206
12.2.2 External field208
12.2.3 Electron-phonon interaction209
12.3 Diagram Rules in Momentum Space211
12.3.1 Two-body interaction213
12.3.2 External field215
12.3.3 Electron-phonon interaction216
12.4 Proper Self-Energies and Dyson's Equations218
12.5 Zero-Temperature Limit220
Chapter 13 Three Approximation Schemes of the Diagram Technique224
13.1 The Formal and Partial Summations of Diagrams224
13.1.1 Formal summations and framework diagrams224
13.1.2 Polarized Green's functions229
13.1.3 Partial summation of diagrams232
13.2 Self-Consistent Hartree-Fock Approximation233
13.2.1 Self-consistent Hartree-Fock approximation method233
13.2.2 Zero temperature236
13.2.3 Finite temperature241
13.3 Ring-Diagram Approximation244
13.3.1 High-density electron gases244
13.3.2 Zero temperature245
13.3.3 Equivalence to random phase approximation262
13.4 Ladder-Diagram Approximation265
13.4.1 Rigid-ball model265
13.4.2 Ladder-diagram approximation268
13.4.3 Physical quantities281
Chapter 14 Linear Response Theory287
14.1 Linear Response Functions287
14.2 Matsubara Linear Response Functions294
14.3 Magnetic Susceptibility297
14.3.1 Magnetic susceptibility expressed by the retarded Green's function297
14.3.2 Magnetic susceptibility of electrons299
14.3.3 Enhancement of magnetic susceptibility300
14.3.4 Dynamic and static susceptibilities of paramagnetic states300
14.3.5 Stoner criterion301
14.4 Thermal Conductivity302
14.5 Linear Response of Generalized Current306
14.5.1 Definitions of several generalized currents306
14.5.2 Linear response307
14.5.3 Response coefficients expressed by correlation functions311
14.5.4 Electric current313
Chapter 15 The Equation of Motion Technique for the Green's Functions317
15.1 The Equation of Motion Technique318
15.1.1 Hartree approximation321
15.1.2 Hartree-Fock approximation322
15.2 Spectral Theorem324
15.2.1 Spectral theorem324
15.2.2 The procedure of solving Green's functions by equation of motion328
15.3 Application:Hubbard Model329
15.3.1 Hubbard Hamiltonian330
15.3.2 Exact solution of Hubbard model in the case of zero bandwidth332
15.3.3 Strong-correlation effect in a narrow energy band335
15.4 Application:Interaction Between Electrons Causes the Enhancement of Magnetic Susceptibility341
15.5 Equation of Motion Method for the Matsubara Green's Functions343
Chapter 16 Magnetic Systems Described by Heisenberg Model348
16.1 Spontaneous Magnetization and Heisenberg Model348
16.1.1 Magnetism of materials348
16.1.2 Heisenberg model350
16.2 One Component of Magnetization For S=1/2 Ferromagnetism354
16.3 One Component of Magnetization for a Ferromagnet With Arbitrary Spin Quantum Number358
16.4 Explanation to the Experimental Laws of Ferromagnets363
16.4.1 Spontaneous magnetization at very low temperature363
16.4.2 Spontaneous magnetization when temperature closes to Curie point364
16.4.3 Magnetic susceptibility of paramagnetic phase365
16.5 One Component of Magnetization for an Antiferromagnet With Arbitrary Spin Quantum Number366
16.5.1 Spin quantum number S=1/2367
16.5.2 Magnetic field is absent372
16.5.3 Arbitrary spin quantum number S373
16.6 One Component of Magnetization for Ferromagnetic and Antiferromagnetic Films374
16.6.1 Ferromagnetic films374
16.6.2 Antiferromagnetic films379
16.7 More Than One Spin in Every Site384
16.7.1 The model Hamiltonian and formalism384
16.7.2 Properties of the system388
16.8 Three Components of Magnetization for a Ferromagnet with Arbitrary Spin Quantum Number401
16.8.1 Single-ion anisotropy along z direction402
16.8.2 Single-ion anisotropy along any direction412
16.8.3 The solution of the ordinary differential equation419
16.9 Three Components of Magnetizations for Antiferromagnets and Magentic Films422
16.9.1 Three components of magnetization for an antiferromagnet422
16.9.2 Three components of magnetization for ferromagnetic films425
16.9.3 Three components of magnetization for antiferromagnetic films439
Chapter 17 The Green's Functions for Boson Systems with Condensation453
17.1 The Properties of Boson Systems with Condensation454
17.1.1 Noninteracting ground state454
17.1.2 Interacting ground state454
17.1.3 The energy spectrum of weakly excited states456
17.2 The Normal and Anomalous Green's functions457
17.2.1 The Green's functions457
17.2.2 The anomalous Green's functions459
17.2.3 The Green's functions for noninteracting systems460
17.3 Diagram Technique462
17.4 Proper Self-Energies and Dyson's Equations469
17.4.1 Dyson's equations469
17.4.2 Solutions of Dyson's equations471
17.4.3 The energy spectrum of weakly excited states473
17.5 Low-Density Bosonic Rigid-Ball Systems476
17.6 Boson Systems at Very Low Temperature481
Chapter 18 Superconductors With Weak Interaction Between Electrons489
18.1 The Hamiltonian490
18.2 The Green's and Matsubara Green's Functions in the Nambu Representation491
18.2.1 Nambu Green's functions491
18.2.2 Nambu Matsubara Green's functions493
18.3 Equations of Motion of Nambu Matsubara Green's functions and Their Solutions494
18.4 Evaluation of Physical Quantities499
18.4.1 The self-consistent equation and the gap function499
18.4.2 Energy gap at zero temperature500
18.4.3 Critical temperature Tc501
18.4.4 Energy gap as a function of temperature△(T)502
18.4.5 Density of states of excitation spectrum502
18.5 Mean-Field Approximation502
18.5.1 Mean-field approximation of the Hamiltonian502
18.5.2 Expressions of the Heisenberg operators504
18.5.3 Construction of the Green's functions506
18.6 Some Remarks508
18.6.1 Strongly coupling Hamiltonian508
18.6.2 The coexistence of superconducting and magnetic states509
18.6.3 Off-diagonal long-range order510
18.6.4 Two-fluid model511
18.6.5 The electromagnetic properties512
18.6.6 High Tc superconductivity513
Chapter 19 Nonequilibrium Green's Functions516
19.1 Definitions and Properties516
19.2 Diagram Technique519
19.3 Proper Self-Energies and Dyson's Equations528
19.4 Langreth Theorem533
Chapter 20 Electronic Transport through a Mesoscopic Structure541
20.1 Model Hamiltonian541
20.1.1 Model Hamiltonian541
20.1.2 Unitary transformation543
20.2 Formula of Electric Current546
20.3 Tunnelling Conductance550
20.4 Magnetoresistance Effect of a FM/I/FM Junction558
Appendix A Wick's Theorem in the Macroscopic Limit568
Appendix B The Hamiltonian of the Jellium Model of an Electron Gas in a Metal571
Appendix C An Alternative Derivation of the Regularity Condition574
Appendix D Identities Valid for Both Trigonometric and Hyperbolic Chebyshev Functions576
Index577
热门推荐
- 1579662.html
- 2241756.html
- 1761372.html
- 506500.html
- 2938592.html
- 1452891.html
- 2756999.html
- 2293710.html
- 2948222.html
- 3045113.html
- http://www.ickdjs.cc/book_141356.html
- http://www.ickdjs.cc/book_3693369.html
- http://www.ickdjs.cc/book_1884262.html
- http://www.ickdjs.cc/book_1323112.html
- http://www.ickdjs.cc/book_3354828.html
- http://www.ickdjs.cc/book_1434108.html
- http://www.ickdjs.cc/book_1036724.html
- http://www.ickdjs.cc/book_1796485.html
- http://www.ickdjs.cc/book_2981519.html
- http://www.ickdjs.cc/book_1874255.html