图书介绍

代数图基础2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

代数图基础
  • 刘彥佩著 著
  • 出版社: 合肥:中国科学技术大学出版社
  • ISBN:7312030086
  • 出版时间:2013
  • 标注页数:402页
  • 文件大小:55MB
  • 文件页数:417页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

代数图基础PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Abstract Graphs1

1.1 Graphs and Networks1

1.2 Surfaces7

1.3 Embeddings13

1.4 Abstract Representation18

1.5 Notes22

Chapter 2 Abstract Maps26

2.1 Ground Sets26

2.2 Basic Permutations28

2.3 Conjugate Axiom30

2.4 Transitive Axiom33

2.5 Included Angles37

2.6 Notes39

Chapter 3 Duality43

3.1 Dual Maps43

3.2 Deletion of an Edge48

3.3 Addition of an Edge58

3.4 Basic Transformation65

3.5 Notes67

Chapter 4 Orientability69

4.1 Orientation69

4.2 Basic Equivalence72

4.3 Euler Characteristic77

4.4 Pattern Examples80

4.5 Notes81

Chapter 5 Orientable Maps83

5.1 Butterflies83

5.2 Simplified Butterflies85

5.3 Reduced Rules88

5.4 Orientable Principles92

5.5 Orientable Genus94

5.6 Notes95

Chapter 6 Nonorientable Maps97

6.1 Barflies97

6.2 Simplified Barflies100

6.3 Nonorientable Rules102

6.4 Nonorientable Principles106

6.5 Nonorientable Genus107

6.6 Notes108

Chapter 7 Isomorphisms of Maps110

7.1 Commutativity110

7.2 Isomorphism Theorem114

7.3 Recognition117

7.4 Justification120

7.5 Pattern Examples123

7.6 Notes127

Chapter 8 Asymmetrization129

8.1 Automorphisms129

8.2 Upper Bounds of Group Order131

8.3 Determination of the Group134

8.4 Rootings138

8.5 Notes141

Chapter 9 Asymmetrized Petal Bundles143

9.1 Orientable Petal Bundles143

9.2 Planar Pedal Bundles147

9.3 Nonorientable Pedal Bundles150

9.4 The Number of Pedal Bundles154

9.5 Notes157

Chapter 10 Asymmetrized Maps159

10.1 Orientable Equation159

10.2 Planar Rooted Maps165

10.3 Nonorientable Equation171

10.4 Gross Equation175

10.5 The Number of Rooted Maps178

10.6 Notes179

Chapter 11 Maps Within Symmetry181

11.1 Symmetric Relation181

11.2 An Application182

11.3 Symmetric Principle184

11.4 General Examples186

11.5 Notes188

Chapter 12 Genus Polynomials190

12.1 Associate Surfaces190

12.2 Layer Division of a Surface192

12.3 Handle Polynomials195

12.4 Crosscap Polynomials197

12.5 Notes198

Chapter 13 Census with Partitions200

13.1 Planted Trees200

13.2 Hamiltonian Cubic Maps207

13.3 Halin Maps209

13.4 Biboundary Inner Rooted Maps211

13.5 General Maps215

13.6 Pan-Flowers217

13.7 Notes221

Chapter 14 Equations with Partitions223

14.1 The Meson Functional223

14.2 General Maps on the Sphere227

14.3 Nonseparable Maps on the Sphere230

14.4 Maps Without Cut-Edge on Surfaces233

14.5 Eulerian Maps on the Sphere236

14.6 Eulerian Maps on Surfaces239

14.7 Notes243

Chapter 15 Upper Maps of a Graph245

15.1 Semi-Automorphisms on a Graph245

15.2 Automorphisms on a Graph248

15.3 Relationships250

15.4 Upper Maps with Symmetry252

15.5 Via Asymmetrized Upper Maps254

15.6 Notes257

Chapter 16 Genera of Graphs259

16.1 A Recursion Theorem259

16.2 Maximum Genus261

16.3 Minimum Genus264

16.4 Average Genus267

16.5 Thickness272

16.6 Interlacedness275

16.7 Notes276

Chapter 17 Isogemial Graphs278

17.1 Basic Concepts278

17.2 Two Operations279

17.3 Isogemial Theorem281

17.4 Nonisomorphic Isogemial Graphs282

17.5 Notes287

Chapter 18 Surface Embeddability289

18.1 Via Tree-Travels289

18.2 Via Homology299

18.3 Via Joint Trees303

18.4 Via Configurations310

18.5 Notes316

Appendix 1 Concepts of Polyhedra,Surfaces,Embeddings and Maps318

Appendix 2 Table of Genus Polynomials for Embeddings and Maps of Small Size328

Appendix 3 Atlas of Rooted and Unrooted Maps for Small Graphs340

Bibliography388

Terminology394

Author Index400

热门推荐