图书介绍
数值最优化:英文本2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- JorgeNocedal,St 著
- 出版社: 科学出版计
- ISBN:7030166752
- 出版时间:2006
- 标注页数:636页
- 文件大小:113MB
- 文件页数:40179241页
- 主题词:最优化算法-研究生-教材-英文
PDF下载
下载说明
数值最优化:英文本PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
Mathematical Formulation2
Example:A Transportation Problem4
Continuous versus Discrete Optimization4
Constrained and Unconstrained Optimization6
Global and Local Optimization6
Stochastic and Deterministic Optimization7
Optimization Algorithms7
Convexity8
Notes and References9
2 Fundamentals of Unconstrained Optimization10
2.1 What Is a Solution?13
Recognizing a Local Minimum15
Nonsmooth Problems18
2.2 Overview of Algorithms19
Two Strategies:Line Search and Trust Region19
Search Directions for Line Search Methods21
Models for Trust-Region Methods26
Scaling27
Rates of Convergence28
R-Rates of Convergence29
Notes and References30
Exercises30
3 Line Search Methods34
3.1 Step Length36
The Wolfe Conditions37
The Goldstein Conditions41
Sufficient Decrease and Backtracking41
3.2 Convergence of Line Search Methods43
3.3 Rate of Convergence46
Convergence Rate of Steepest Descent47
Quasi-Newton Methods49
Newton’s Method51
Coordinate Descent Methods53
3.4 Step-Length Selection Algorithms55
Interpolation56
The Initial Step Length58
A Line Search Algorithm for the Wolfe Conditions58
Notes and References61
Exercises62
4 Trust-Region Methods64
Outline of the Algorithm67
4.1 The Cauchy Point and Related Algorithms69
The Cauchy Point69
Improving on the Cauchy Point70
The Dogleg Method71
Two-Dimensional Subspace Minimization74
Steihaug’s Approach75
4.2 Using Nearly Exact Solutions to the Subproblem77
Characterizing Exact Solutions77
Calculating Nearly Exact Solutions78
The Hard Case82
Proof of Theorem 4.384
4.3 Global Convergence87
Reduction Obtained by the Cauchy Point87
Convergence to Stationary Points89
Convergence of Algorithms Based on Nearly Exact Solutions93
4.4 Other Enhancements94
Scaling94
Non-Euclidean Trust Regions96
Notes and References97
Exercises97
5 Conjugate Gradient Methods100
5.1 The Linear Conjugate Gradient Method102
Conjugate Direction Methods102
Basic Properties of the Conjugate Gradient Method107
A Practical Form of the Conjugate Gradient Method111
Rate of Convergence112
Preconditioning118
Practical Preconditioners119
5.2 Nonlinear Conjugate Gradient Methods120
The Fletcher-Reeves Method120
The Polak-Ribiere Method121
Quadratic Termination and Restarts122
Numerical Performance124
Behavior of the Fletcher-Reeves Method124
Global Convergence127
Notes and References131
Exercises132
6 Practical Newton Methods134
6.1 Inexact Newton Steps136
6.2 Line Search Newton Methods139
Line Search Newton-CG Method139
Modified Newton’s Method141
6.3 Hessian Modifications142
Eigenvalue Modification143
Adding a Multiple of the Identity144
Modified Cholesky Factorization145
Gershgorin Modification150
Modified Symmetric Indefinite Factorization151
6.4 Trust-Region Newton Methods154
Newton-Dogleg and Subspace-Minimization Methods154
Accurate Solution of the Trust-Region Problem155
Trust-Region Newton-CG Method156
Preconditioning the Newton-CG Method157
Local Convergence of Trust-Region Newton Methods159
Notes and References162
Exercises162
7 Calculating Derivatives164
7.1 Finite-Difference Derivative Approximations166
Approximating the Gradient166
Approximating a Sparse Jacobian169
Approximating the Hessian173
Approximating a Sparse Hessian174
7.2 Automatic Differentiation176
An Example177
The Forward Mode178
The Reverse Mode179
Vector Functions and Partial Separability183
Calculating Jacobians of Vector Functions184
Calculating Hessians:Forward Mode185
Calculating Hessians:Reverse Mode187
Current Limitations188
Notes and References189
Exercises189
8 Quasi-Newton Methods192
8.1 The BFGS Method194
Properties of the BFGS Method199
Implementation200
8.2 The SR1 Method202
Properties of SR1 Updating205
8.3 The Broyden Class207
Properties of the Broyden Class209
8.4 Convergence Analysis211
Global Convergence of the BFGS Method211
Superlinear Convergence of BFGS214
Convergence Analysis of the SR1 Method218
Notes and References219
Exercises220
9 Large-Scale Quasi-Newton and Partially Separable Optimization222
9.1 Limited-Memory BFGS224
Relationship with Conjugate Gradient Methods227
9.2 General Limited-Memory Updating229
Compact Representation of BFGS Updating230
SR1 Matrices232
Unrolling the Update232
9.3 Sparse Quasi-Newton Updates233
9.4 Partially Separable Functions235
A Simple Example236
Internal Variables237
9.5 Invariant Subspaces and Partial Separability240
Sparsity vs.Partial Separability242
Group Partial Separability243
9.6 Algorithms for Partially Separable Functions244
Exploiting Partial Separability in Newton’s Method244
Quasi-Newton Methods for Partially Separable Functions245
Notes and References247
Exercises248
10 Nonlinear Least-Squares Problems250
10.1 Background253
Modeling,Regression,Statistics253
Linear Least-Squares Problems256
10.2 Algorithms for Nonlinear Least-Squares Problems259
The Gauss-Newton Method259
The Levenberg-Marquardt Method262
Implementation of the Levenberg-Marquardt Method264
Large-Residual Problems266
Large-Scale Problems269
10.3 Orthogonal Distance Regression271
Notes and References273
Exercises274
11 Nonlinear Equations276
11.1 Local Algorithms281
Newton’s Method for Nonlinear Equations281
Inexact Newton Methods284
Broyden’s Method286
Tensor Methods290
11.2 Practical Methods292
Merit Functions292
Line Search Methods294
Trust-Region Methods298
11.3 Continuation/Homotopy Methods304
Motivation304
Practical Continuation Methods306
Notes and References310
Exercises311
12 Theory of Constrained Optimization314
Local and Global Solutions316
Smoothness317
12.1 Examples319
A Single Equality Constraint319
A Single Inequality Constraint321
Two Inequality Constraints324
12.2 First-Order Optimality Conditions327
Statement of First-Order Necessary Conditions327
Sensitivity330
12.3 Derivation of the First-Order Conditions331
Feasible Sequences332
Characterizing Limiting Directions:Constraint Qualifications336
Introducing Lagrange Multipliers339
Proof of Theorem 12.1341
12.4 Second-Order Conditions342
Second-Order Conditions and Projected Hessians348
Convex Programs350
12.5 Other Constraint Qualifications351
12.6 A Geometric Viewpoint354
Notes and References357
Exercises358
13 Linear Programming&The Simplex Method362
Linear Programming364
13.1 Optimality and Duality366
Optimality Conditions366
The Dual Problem367
13.2 Geometry of the Feasible Set370
Basic Feasible Points370
Vertices of the Feasible Polytope372
13.3 The Simplex Method374
Outline of the Method374
Finite Termination of the Simplex Method377
A Single Step of the Method378
13.4 Linear Algebra in the Simplex Method379
13.5 Other (Important) Details383
Pricing and Selection of the Entering Index383
Starting the Simplex Method386
Degenerate Steps and Cycling389
13.6 Where Does the Simplex Method Fit?391
Notes and References392
Exercises393
14 Linear Programming:Interior-Point Methods394
14.1 Primal-Dual Methods396
Outline396
The Central Path399
A Primal-Dual Framework401
Path-Following Methods402
14.2 A Practical Primal-Dual Algorithm404
Solving the Linear Systems408
14.3 Other Primal-Dual Algorithms and Extensions409
Other Path-Following Methods409
Potential-Reduction Methods409
Extensions410
14.4 Analysis of Algorithm 14.2411
Notes and References416
Exercises417
15 Fundamentals of Algorithms for Nonlinear Constrained Optimization420
Initial Study of a Problem422
15.1 Categorizing Optimization Algorithms423
15.2 Elimination of Variables426
Simple Elimination for Linear Constraints427
General Reduction Strategies for Linear Constraints430
The Effect of Inequality Constraints434
15.3 Measuring Progress:Merit Functions434
Notes and References437
Exercises438
16 Quadratic Programming440
An Example:Portfolio Optimization442
16.1 Equality-Constrained Quadratic Programs443
Properties of Equality-Constrained QPs444
16.2 Solving the KKT System447
Direct Solution of the KKT System448
Range-Space Method449
Null-Space Method450
A Method Based on Conjugacy452
16.3 Inequality-Constrained Problems453
Optimality Conditions for Inequality-Constrained Problems454
Degeneracy455
16.4 Active-Set Methods for Convex QP457
Specification of the Active-Set Method for Convex QP461
An Example463
Further Remarks on the Active-Set Method465
Finite Termination of the Convex QP Algorithm466
Updating Factorizations467
16.5 Active-Set Methods for Indefinite QP470
Illustration472
Choice of Starting Point474
Failure of the Active-Set Method475
Detecting Indefiniteness Using the LBLT Factorization475
16.6 The Gradient-Projection Method476
Cauchy Point Computation477
Subspace Minimization480
16.7 Interior-Point Methods481
Extensions and Comparison with Active-Set Methods484
16.8 Duality484
Notes and References485
Exercises486
17 Penalty,Barrier,and Augmented Lagrangian Methods490
17.1 The Quadratic Penalty Method492
Motivation492
Algorithmic Framework494
Convergence of the Quadratic Penalty Function495
17.2 The Logarithmic Barrier Method500
Properties of Logarithmic Barrier Functions500
Algorithms Based on the Log-Barrier Function505
Properties of the Log-Barrier Function and Framework 17.2507
Handling Equality Constraints509
Relationship to Primal-Dual Methods510
17.3 Exact Penalty Functions512
17.4 Augmented Lagrangian Method513
Motivation and Algorithm Framework513
Extension to Inequality Constraints516
Properties of the Augmented Lagrangian518
Practical Implementation521
17.5 Sequential Linearly Constrained Methods523
Notes and References525
Exercises526
18 Sequential Quadratic Programming528
18.1 Local SQP Method530
SQP Framework531
Inequality Constraints533
IQP vs.EQP534
18.2 Preview of Practical SQP Methods534
18.3 Step Computation536
Equality Constraints536
Inequality Constraints538
18.4 The Hessian of the Quadratic Model539
Full Quasi-Newton Approximations540
Hessian of Augmented Lagrangian541
Reduced-Hessian Approximations542
18.5 Merit Functions and Descent544
18.6 A Line Search SQP Method547
18.7 Reduced-Hessian SQP Methods548
Some Properties of Reduced-Hessian Methods549
Update Criteria for Reduced-Hessian Updating550
Changes of Bases551
A Practical Reduced-Hessian Method552
18.8 Trust-Region SQP Methods553
Approach Ⅰ:Shifting the Constraints555
Approach Ⅱ:Two Elliptical Constraints556
Approach Ⅲ:Sl 1 QP (Sequential l 1 Quadratic Programming)557
18.9 A Practical Trust-Region SQP Algorithm560
18.10 Rate of Convergence563
Convergence Rate of Reduced-Hessian Methods565
18.11 The Maratos Effect567
Second-Order Correction570
Watchdog (Nonmonotone) Strategy571
Notes and References573
Exercises574
A Background Material576
A.1 Elements of Analysis,Geometry,Topology577
Topology of the Euclidean Space Rn577
Continuity and Limits580
Derivatives581
Directional Derivatives583
Mean Value Theorem584
Implicit Function Theorem585
Geometry of Feasible Sets586
Order Notation591
Root-Finding for Scalar Equations592
A.2 Elements of Linear Algebra593
Vectors and Matrices593
Norms594
Subspaces597
Eigenvalues,Eigenvectors,and the Singular-Value Decomposition598
Determinant and Trace599
Matrix Factorizations:Cholesky,LU,QR600
Sherman-Morrison-Woodbury Formula605
Interlacing Eigenvalue Theorem605
Error Analysis and Floating-Point Arithmetic606
Conditioning and Stability608
References611
Index625
热门推荐
- 2703957.html
- 1534436.html
- 1611065.html
- 626222.html
- 1174955.html
- 2115882.html
- 3860716.html
- 16344.html
- 3023847.html
- 3357292.html
- http://www.ickdjs.cc/book_353733.html
- http://www.ickdjs.cc/book_454507.html
- http://www.ickdjs.cc/book_1377248.html
- http://www.ickdjs.cc/book_2205878.html
- http://www.ickdjs.cc/book_413431.html
- http://www.ickdjs.cc/book_164843.html
- http://www.ickdjs.cc/book_443458.html
- http://www.ickdjs.cc/book_2774660.html
- http://www.ickdjs.cc/book_150746.html
- http://www.ickdjs.cc/book_1369394.html