图书介绍
泛函分析2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)拉克斯(Lax,P.D.)著 著
- 出版社: 高等教育出版社
- ISBN:7040216493
- 出版时间:2007
- 标注页数:580页
- 文件大小:105MB
- 文件页数:40196916页
- 主题词:泛函分析-高等学校-教材-英文
PDF下载
下载说明
泛函分析PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1. Linear Spaces1
2. Linear Maps8
2.1 Algebra of linear maps8
2.2. Index of a linear map12
3. The Hahn-Banach Theorem19
3.1 The extension theorem19
3.2 Geometric Hahn-Banach theorem21
3.3 Extensions of the Hahn-Banach theorem24
4. Applications of the Hahn-Banach theorem29
4.1 Extension of positive linear functionals29
4.2 Banach limits31
4.3 Finitely additive invariant set functions33
Historical note34
5. Normed Linear Spaces36
5.1 Norms36
5.2 Noncompactness of the unit ball43
5.3 Isometries47
6. Hilbert Space52
6.1 Scalar product52
6.2 Closest point in a closed convex subset54
6.3 Linear functionals56
6.4 Linear span58
7. Applications of Hilbert Space Results63
7.1 Radon-Nikodym theorem63
7.2 Dirichlet's problem65
8. Duals of Normed Linear Spaces72
8.1 Bounded linear functionals72
8.2 Extension of bounded linear functionals74
8.3 Reflexive spaces78
8.4 Support function of a set83
9. Applications of Duality87
9.1 Completeness of weighted powers87
9.2 The Muntz approximation theorem88
9.3 Runge's theorem91
9.4 Dual variational problems in function theory91
9.5 Existence of Green's function94
10. Weak Convergence99
10.1 Uniform boundedness of weakly convergent sequences101
10.2 Weak sequential compactness104
10.3 Weak convergence105
11. Applications of Weak Convergence108
11.1 Approximation of the?? function by continuous functions108
11.2 Divergence of Fourier series109
11.3 Approximate quadrature110
11.4 Weak and strong analyticity of vector-valued functions111
11.5 Existence of solutions of partial differential equations112
11.6 The representation of analytic functions with positive real part115
12. The Weak and Weak Topologies118
13. Locally Convex Topologies and the Krein-Milman Theorem122
13.1 Separation of points by linear functional123
13.2 The Krein-Milman theorem124
13.3 The Stone-Weierstrass theorem126
13.4 Choquet's theorem128
14. Examples of Convex Sets and Their Extreme Points133
14.1 Positive functionals133
14.2 Convex functions135
14.3 Completely monotone functions137
14.4 Theorems of Caratheodory and Bochner141
14.5 A theorem of Krein147
14.6 Positive harmonic functions148
14.7 The Hamburger moment problem150
14.8 G. Birkhoff's conjecture151
14.9 De Finetti's theorem156
14.10 Measure-preserving mappings157
Historical note159
15. Bounded Linear Maps160
15.1 Boundedness and continuity160
15.2 Strong and weak topologies165
15.3 Principle of uniform boundedness166
15.4 Composition of bounded maps167
15.5 The open mapping principle168
Historical note172
16. Examples of Bounded Linear Maps173
16.1 Boundedness of integral operators173
16.2 The convexity theorem of Marcel Riesz177
16.3 Examples of bounded integral operators180
16.4 Solution operators for hyperbolic equations186
16.5 Solution operator for the heat equation188
16.6 Singular integral operators pseudodifferential operators and Fourier integral operators190
17. Banach Algebras and their Elementary Spectral Theory192
17.1 Normed algebras192
17.2 Functional calculus197
18. Gelfand's Theory of Commutative Banach Algebras202
19. Applications of Gelfand's Theory of Commutative Banach Algebras210
19.1 The algebra C(S)210
19.2 Gelfand compactification210
19.3 Absolutely convergent Fourier series212
19.4 Analytic functions in the closed unit disk213
19.5 Analytic functions in the open unit disk214
19.6 Wiener's Tauberian theorem215
19.7 Commutative B-algebras221
Historical note224
20. Examples of Operators and Their Spectra226
20.1 Invertible maps226
20.2 Shifts229
20.3 Volterra integral operators230
20.4 The Fourier transform231
21. Compact Maps233
21.1 Basic properties of compact maps233
21.2 The spectral theory of compact maps238
Historical note244
22. Examples of Compact Operators245
22.1 Compactness criteria245
22.2 Integral operators246
22.3 The inverse of elliptic partial differential operators249
22.4 Operators defined by parabolic equations250
22.5 Almost orthogonal bases251
23. Positive compact operators253
23.1 The spectrum of compact positive operators253
23.2 Stochastic integral operators256
23.3 Inverse of a second order elliptic operator258
24. Fredholm's Theory of Integral Equations260
24.1 The Fredholm determinant and the Fredholm resolvent260
24.2 The multiplicative property of the Fredholm determinant268
24.3 The Gelfand-Levitan-Marchenko equation and Dyson's formula271
25. Invariant Subspaces275
25.1 Invariant subspaces of compact maps275
25.2 Nested invariant subspaces277
26. Harmonic Analysis on a Halfline284
26.1 The Phragmen-Lindelof principle for harmonic functions284
26.2 An abstract Pragmen-Lindelof principle285
26.3 Asymptotic expansion297
27. Index Theory300
27.1 The Noether index301
Historical note305
27.2 Toeplitz operators305
27.3 Hankel operators312
28. Compact Symmetric Operators in Hilbert Space315
29. Examples of Compact Symmetric Operators323
29.1 Convolution323
29.2 The inverse of a differential operator326
29.3 The inverse of partial differential operators327
30. Trace Class and Trace Formula329
30.1 Polar decomposition and singular values329
30.2 Trace class,trace norm,and trace330
30.3 The trace formula334
30.4 The determinant341
30.5 Examples and counterexamples of trace class operators342
30.6 The Poisson summation formula348
30.7 How to express the index of an operator as a difference of traces349
30.8 The Hilbert-Schmidt class352
30.9 Determinant and trace for operator in Banach spaces353
31. Spectral Theory of Symmetric,Normal,and Unitary Operators354
31.1 The spectrum of symmetric operators356
31.2 Functional calculus for symmetric operators358
31.3 Spectral resolution of symmetric operators361
31.4 Absolutely continuous,singular,and point spectra364
31.5 The spectral representation of symmetric operators364
31.6 Spectral resolution of normal operators370
31.7 Spectral resolution of unitary operators372
Historical note375
32. Spectral Theory of Self-Adjoint Operators377
32.1 Spectral resolution378
32.2 Spectral resolution using the Cayley transform389
32.3 A functional calculus for self-adjoint operators390
33. Examples of Self-Adjoint Operators394
33.1 The extension of unbounded symmetric operators394
33.2 Examples of the extension of symmetric operators; deficiency indices397
33.3 The Friedrichs extension402
33.4 The Rellich perturbation theorem406
33.5 The moment problem410
Historical note414
34. Semigroups of Operators416
34.1 Strongly continuous one-parameter semigroups418
34.2 The generation of semigroups424
34.3 The approximation of semigroups427
34.4 Perturbation of semigroups432
34.5 The spectral theory of semigroups434
35. Groups of Unitary Operators440
35.1 Stone's theorem440
35.2 Ergodic theory443
35.3 The Koopman group445
35.4 The wave equation447
35.5 Translation representation448
35.6 The Heisenberg commutation relation455
Historical note459
36. Examples of Strongly Continuous Semigroups461
36.1 Semigroups denned by parabolic equations461
36.2 Semigroups defined by elliptic equations462
36.3 Exponential decay of semigroups465
36.4 The Lax-Phillips semigroup470
36.5 The wave equation in the exterior of an obstacle472
37. Scattering Theory477
37.1 Perturbation theory477
37.2 The wave operators480
37.3 Existence of the wave operators482
37.4 The invariance of wave operators490
37.5 Potential scattering490
37.6 The scattering operator491
Historical note492
37.7 The Lax-Phillips scattering theory493
37.8 The zeros of the scattering matrix499
37.9 The automorphic wave equation500
38. A Theorem of Beurling513
38.1 The Hardy space513
38.2 Beurling's theorem515
38.3 The Titchmarsh convolution theorem523
Historical note525
Texts527
A. Riesz-Kakutani representation theorem529
A.l Positive linear functionals529
A.2 Volume532
A.3 L as a space of functions535
A.4 Measurable sets and measure538
A.5 The Lebesgue measure and integral541
B. Theory of distributions543
B.l Definitions and examples543
B.2 Operations on distributions545
B.3 Local properties of distributions547
B.4 Applications to partial differential equations554
B.5 The Fourier transform558
B.6 Applications of the Fourier transform568
B.7 Fourier series569
C. Zorn's Lemma571
Author Index573
Subject Index577
热门推荐
- 2418586.html
- 3652139.html
- 150029.html
- 2209536.html
- 1962039.html
- 1528285.html
- 761576.html
- 889847.html
- 3445165.html
- 1227748.html
- http://www.ickdjs.cc/book_370680.html
- http://www.ickdjs.cc/book_904049.html
- http://www.ickdjs.cc/book_2144975.html
- http://www.ickdjs.cc/book_1217229.html
- http://www.ickdjs.cc/book_2140745.html
- http://www.ickdjs.cc/book_2600832.html
- http://www.ickdjs.cc/book_2110697.html
- http://www.ickdjs.cc/book_3773250.html
- http://www.ickdjs.cc/book_1910809.html
- http://www.ickdjs.cc/book_3313204.html