图书介绍
相变与重正化群=PHASE TRANSITIONS AND RENORMALIZATION GROUP 影印版 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- 联合国教科文组织国际教育局编 著
- 出版社:
- ISBN:
- 出版时间:2014
- 标注页数:0页
- 文件大小:49MB
- 文件页数:470页
- 主题词:
PDF下载
下载说明
相变与重正化群=PHASE TRANSITIONS AND RENORMALIZATION GROUP 影印版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Quantum field theory and the renormalization group1
1.1 Quantum electrodynamics:A quantum field theory3
1.2 Quantum electrodynamics:The problem of infinities4
1.3 Renormalization7
1.4 Quantum field theory and the renormalization group9
1.5 A triumph of QFT:The Standard Model10
1.6 Critical phenomena:Other infinities12
1.7 Kadanoff and Wilson's renormalization group14
1.8 Effective quantum field theories16
2 Gaussian expectation values.Steepest descent method19
2.1 Generating functions19
2.2 Gaussian expectation values.Wick's theorem20
2.3 Perturbed Gaussian measure.Connected contributions24
2.4 Feynman diagrams.Connected contributions25
2.5 Expectation values.Generating function.Cumulants28
2.6 Steepest descent method31
2.7 Steepest descent method:Several variables,generating functions37
Exercises40
3 Universality and the continuum limit45
3.1 Central limit theorem of probabilities45
3.2 Universality and fixed points of transformations54
3.3 Random walk and Brownian motion59
3.4 Random walk:Additional remarks71
3.5 Brownian motion and path integrals72
Exercises75
4 Classical statistical physics:One dimension79
4.1 Nearest-neighbour interactions Transfer matrix80
4.2 Correlation functions83
4.3 Thermody namics limit85
4.4 Connected functions and cluster properties88
4.5 Statistical models:Simple examples90
4.6 The Gaussian model92
4.7 Gaussian model:The continuum limit98
4.8 More general models:The continuum limit102
Exercises104
5 Continuum limit and path integrals111
5.1 Gaussian path integrals111
5.2 Gaussian correlations.Wick's theorem118
5.3 Perturbed Gaussian measure118
5.4 Perturbative calculations:Examples120
Exercises124
6 Ferromagnetic systems.Correlation functions127
6.1 Ferromagnetic systems:Definition127
6.2 Correlation functions.Fourier representation133
6.3 Legendre transformation and vertex functions137
6.4 Legendre transformation and steepest descent method142
6.5 Two-and four-point vertex functions143
Exercises145
7 Phase transitions:Generalities and examples147
7.1 Infinite temperature or independent spins150
7.2 Phase transitions in infinite dimension153
7.3 Universality in infinite space dimension158
7.4 Transformations,fixed points and universality161
7.5 Finite-range interactions in finite dimension163
7.6 Ising model:Transfer matrix166
7.7 Continuous symmetries and transfer matrix171
7.8 Continuous symmetries and Goldstone modes173
Exercises175
8 Quasi-Gaussian approximation:Universality,critical dimension179
8.1 Short-range two-spin interactions181
8.2 The Gaussian model:Two-point function183
8.3 Gaussian model and random walk188
8.4 Gaussian model and field integral190
8.5 Quasi-Gaussian approximation194
8.6 The two-point function:Universality196
8.7 Quasi-Gaussian approximation and Landau's theory199
8.8 Continuous symmetries and Goldstone modes200
8.9 Corrections to the quasi-Gaussian approximation202
8.10 Mean-field approximation and corrections207
8.11 Tricritical points211
Exercises212
9 Renormalization group:General formulation217
9.1 Statistical field theory.Landau's Hamiltonian218
9.2 Connected correlation functions.Vertex functions220
9.3 Renormalization group(RG):General idea222
9.4 Hamiltonian flow:Fixed points,stability226
9.5 The Gaussian fixed point231
9.6 Eigen-perturbations:General analysis234
9.7 A non-Gaussian fixed point:The ε-expansion237
9.8 Eigenvalues and dimensions of local polynomials241
10 Perturbative renormalization group:Explicit calculations243
10.1 Critical Hamiltonian and perturbative expansion243
10.2 Feynman diagrams at one-loop order246
10.3 Fixed point and critical behaviour248
10.4 Critical domain254
10.5 Models with O(N)orthogonal symmetry258
10.6 RG near dimension 4259
10.7 Universal quantities:Numerical results262
11 Renormalization group:N-component fields267
11.1 RG:General remarks268
11.2 Gradient flow269
11.3 Model with cubic anisotropy272
11.4 Explicit general expressions:RG analysis276
11.5 Exercise:General model with two parameters281
Exercises284
12 Statistical field theory:Perturbative expansion285
12.1 Generating functionals285
12.2 Gaussian field theory.Wick's theorem287
12.3 Perturbative expansion289
12.4 Loop expansion296
12.5 Dimensional continuation and dimensional regularization299
Exercises306
13 Theσ4 field theory near dimension 4307
13.1 Effective Hamiltonian.Renormalization308
13.2 RG equations313
13.3 Solution ofRG equations:Theε-expansion316
13.4 The critical domain above Tc322
13.5 RG equations for renormalized vertex functions326
13.6 Effective and renormalized interactions328
14 The O(N)symmetric(φ2)2 field theory in the large N limit331
14.1 Algebraic preliminaries332
14.2 Integration over the fieldφ:The determinant333
14.3 The limit N→∞:The critical domain337
14.4 The(φ2)2 field theory for N→∞339
14.5 Singular part of the free energy and equation of state342
14.6 The〈λλ〉and〈φ2φ2〉two-point functions345
14.7 RG and corrections to scaling347
14.8 The 1/N expansion350
14.9 The exponent ηat order 1/N352
14.10 The non-linearσ-model353
15 The non-linearσ-model355
15.1 The non-linearσ-model on the lattice355
15.2 Low-temperature expansion357
15.3 Formal continuum limit362
15.4 Regularization363
15.5 Zero-momentum or IR divergences364
15.6 Renormalization group365
15.7 Solution of the RGE.Fixed points370
15.8 Correlation functions:Scaling form372
15.9 The critical domain:Critical exponents374
15.10 Dimension 2375
15.11 The(φ2)2 field theory at low temperature379
16 Functional renormalization group383
16.1 Partial field integration and effective Hamiltonian383
16.2 High-momentum mode integration and RG equations392
16.3 Perturbative solution:φ4 theory398
16.4 RG equations:Standard form401
16.5 Dimension 4404
16.6 Fixed point:ε-expansion411
16.7 Local stability of the fixed point413
Appendix419
A1 Technical results419
A2 Fourier transformation:Decay and regularity423
A3 Phase transitions:General remarks428
A4 1/N expansion:Calculations433
A5 Functional flow equations:Additional considerations435
Bibliography443
Index449
热门推荐
- 3536850.html
- 3205337.html
- 18832.html
- 1613934.html
- 941926.html
- 1528113.html
- 3259910.html
- 3206676.html
- 3143548.html
- 1523015.html
- http://www.ickdjs.cc/book_627791.html
- http://www.ickdjs.cc/book_1465072.html
- http://www.ickdjs.cc/book_2100225.html
- http://www.ickdjs.cc/book_1059144.html
- http://www.ickdjs.cc/book_1835748.html
- http://www.ickdjs.cc/book_824646.html
- http://www.ickdjs.cc/book_1217829.html
- http://www.ickdjs.cc/book_1244378.html
- http://www.ickdjs.cc/book_180693.html
- http://www.ickdjs.cc/book_3163775.html