图书介绍

相变与重正化群=PHASE TRANSITIONS AND RENORMALIZATION GROUP 影印版 英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

相变与重正化群=PHASE TRANSITIONS AND RENORMALIZATION GROUP 影印版 英文
  • 联合国教科文组织国际教育局编 著
  • 出版社:
  • ISBN:
  • 出版时间:2014
  • 标注页数:0页
  • 文件大小:49MB
  • 文件页数:470页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

相变与重正化群=PHASE TRANSITIONS AND RENORMALIZATION GROUP 影印版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Quantum field theory and the renormalization group1

1.1 Quantum electrodynamics:A quantum field theory3

1.2 Quantum electrodynamics:The problem of infinities4

1.3 Renormalization7

1.4 Quantum field theory and the renormalization group9

1.5 A triumph of QFT:The Standard Model10

1.6 Critical phenomena:Other infinities12

1.7 Kadanoff and Wilson's renormalization group14

1.8 Effective quantum field theories16

2 Gaussian expectation values.Steepest descent method19

2.1 Generating functions19

2.2 Gaussian expectation values.Wick's theorem20

2.3 Perturbed Gaussian measure.Connected contributions24

2.4 Feynman diagrams.Connected contributions25

2.5 Expectation values.Generating function.Cumulants28

2.6 Steepest descent method31

2.7 Steepest descent method:Several variables,generating functions37

Exercises40

3 Universality and the continuum limit45

3.1 Central limit theorem of probabilities45

3.2 Universality and fixed points of transformations54

3.3 Random walk and Brownian motion59

3.4 Random walk:Additional remarks71

3.5 Brownian motion and path integrals72

Exercises75

4 Classical statistical physics:One dimension79

4.1 Nearest-neighbour interactions Transfer matrix80

4.2 Correlation functions83

4.3 Thermody namics limit85

4.4 Connected functions and cluster properties88

4.5 Statistical models:Simple examples90

4.6 The Gaussian model92

4.7 Gaussian model:The continuum limit98

4.8 More general models:The continuum limit102

Exercises104

5 Continuum limit and path integrals111

5.1 Gaussian path integrals111

5.2 Gaussian correlations.Wick's theorem118

5.3 Perturbed Gaussian measure118

5.4 Perturbative calculations:Examples120

Exercises124

6 Ferromagnetic systems.Correlation functions127

6.1 Ferromagnetic systems:Definition127

6.2 Correlation functions.Fourier representation133

6.3 Legendre transformation and vertex functions137

6.4 Legendre transformation and steepest descent method142

6.5 Two-and four-point vertex functions143

Exercises145

7 Phase transitions:Generalities and examples147

7.1 Infinite temperature or independent spins150

7.2 Phase transitions in infinite dimension153

7.3 Universality in infinite space dimension158

7.4 Transformations,fixed points and universality161

7.5 Finite-range interactions in finite dimension163

7.6 Ising model:Transfer matrix166

7.7 Continuous symmetries and transfer matrix171

7.8 Continuous symmetries and Goldstone modes173

Exercises175

8 Quasi-Gaussian approximation:Universality,critical dimension179

8.1 Short-range two-spin interactions181

8.2 The Gaussian model:Two-point function183

8.3 Gaussian model and random walk188

8.4 Gaussian model and field integral190

8.5 Quasi-Gaussian approximation194

8.6 The two-point function:Universality196

8.7 Quasi-Gaussian approximation and Landau's theory199

8.8 Continuous symmetries and Goldstone modes200

8.9 Corrections to the quasi-Gaussian approximation202

8.10 Mean-field approximation and corrections207

8.11 Tricritical points211

Exercises212

9 Renormalization group:General formulation217

9.1 Statistical field theory.Landau's Hamiltonian218

9.2 Connected correlation functions.Vertex functions220

9.3 Renormalization group(RG):General idea222

9.4 Hamiltonian flow:Fixed points,stability226

9.5 The Gaussian fixed point231

9.6 Eigen-perturbations:General analysis234

9.7 A non-Gaussian fixed point:The ε-expansion237

9.8 Eigenvalues and dimensions of local polynomials241

10 Perturbative renormalization group:Explicit calculations243

10.1 Critical Hamiltonian and perturbative expansion243

10.2 Feynman diagrams at one-loop order246

10.3 Fixed point and critical behaviour248

10.4 Critical domain254

10.5 Models with O(N)orthogonal symmetry258

10.6 RG near dimension 4259

10.7 Universal quantities:Numerical results262

11 Renormalization group:N-component fields267

11.1 RG:General remarks268

11.2 Gradient flow269

11.3 Model with cubic anisotropy272

11.4 Explicit general expressions:RG analysis276

11.5 Exercise:General model with two parameters281

Exercises284

12 Statistical field theory:Perturbative expansion285

12.1 Generating functionals285

12.2 Gaussian field theory.Wick's theorem287

12.3 Perturbative expansion289

12.4 Loop expansion296

12.5 Dimensional continuation and dimensional regularization299

Exercises306

13 Theσ4 field theory near dimension 4307

13.1 Effective Hamiltonian.Renormalization308

13.2 RG equations313

13.3 Solution ofRG equations:Theε-expansion316

13.4 The critical domain above Tc322

13.5 RG equations for renormalized vertex functions326

13.6 Effective and renormalized interactions328

14 The O(N)symmetric(φ2)2 field theory in the large N limit331

14.1 Algebraic preliminaries332

14.2 Integration over the fieldφ:The determinant333

14.3 The limit N→∞:The critical domain337

14.4 The(φ2)2 field theory for N→∞339

14.5 Singular part of the free energy and equation of state342

14.6 The〈λλ〉and〈φ2φ2〉two-point functions345

14.7 RG and corrections to scaling347

14.8 The 1/N expansion350

14.9 The exponent ηat order 1/N352

14.10 The non-linearσ-model353

15 The non-linearσ-model355

15.1 The non-linearσ-model on the lattice355

15.2 Low-temperature expansion357

15.3 Formal continuum limit362

15.4 Regularization363

15.5 Zero-momentum or IR divergences364

15.6 Renormalization group365

15.7 Solution of the RGE.Fixed points370

15.8 Correlation functions:Scaling form372

15.9 The critical domain:Critical exponents374

15.10 Dimension 2375

15.11 The(φ2)2 field theory at low temperature379

16 Functional renormalization group383

16.1 Partial field integration and effective Hamiltonian383

16.2 High-momentum mode integration and RG equations392

16.3 Perturbative solution:φ4 theory398

16.4 RG equations:Standard form401

16.5 Dimension 4404

16.6 Fixed point:ε-expansion411

16.7 Local stability of the fixed point413

Appendix419

A1 Technical results419

A2 Fourier transformation:Decay and regularity423

A3 Phase transitions:General remarks428

A4 1/N expansion:Calculations433

A5 Functional flow equations:Additional considerations435

Bibliography443

Index449

热门推荐