图书介绍

弹性力学 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

弹性力学 英文版
  • 伍章健,武海军,韩峰编著 著
  • 出版社: 北京:北京理工大学出版社
  • ISBN:9787564032678
  • 出版时间:2010
  • 标注页数:239页
  • 文件大小:73MB
  • 文件页数:250页
  • 主题词:弹性力学-双语教学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

弹性力学 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 BASIC ASSUMPTIONS AND MATHEMATICAL PRELIMINARIES1

1.1 Introduction1

1.2 Basic Assumptions2

1.3 Coordinate Systems and Transformations4

1.4 Vector and Matrix Notations and Their Operations5

1.5 Divergence Theorem8

Problems/Tutorial Questions9

CHAPTER 2 STRESSES10

2.1 Stress and the Stress Tensor10

2.2 Equilibrium Equations14

2.3 Traction Boundary Conditions15

2.4 Stresses on an Oblique Plane17

2.5 Principal Stresses18

2.6 Stationary and Octahedral Shear Stresses22

2.7 Equilibrium Equations in Curvilinear Coordinates25

Problems/Tutorial Questions27

CHAPTER 3 STRAINS30

3.1 Strains30

3.2 Finite Deformations33

3.3 Strains in a Given Direction and Principal Strains39

3.4 Stationary Shear Strains43

3.5 Compatibility45

3.6 Kinematic and Compatibility Equations in Curvilinear Coordinates47

3.7 Concluding Remarks50

Problems/Tutorial Questions51

CHAPTER 4 FORMULATION OF ELASTICITY PROBLEMS54

4.1 Strain Energy Density Function54

4.2 Generalised Hooke's Law58

4.3 Initial Stresses and Initial Strains72

4.4 Governing Equations and Boundary Conditions73

4.5 General Solution Techniques75

4.6 St.Venant's Principle76

Problems/Tutorial Questions77

CHAPTER 5 TWO-DIMENSIONAL ELASTICITY80

5.1 Plane Strain Problems80

5.2 Plane Stress Problems83

5.3 Similarities and Differences Between Plane Strain/Plane Stress Problems86

5.4 Airy Stress Function and Polynomial Solutions86

5.5 Polar Coordinates93

5.6 Axisymmetric Stress Distributions96

5.7 Rotating Discs99

5.8 Stresses Around a Circular Hole in a Plate Subjected to Equal Biaxial Tension-Compression(Pure Shear in the 45°Direction)103

5.9 Stress Concentration Around a Circular Hole in a Plate Subjected to Uniaxial Tension105

5.10 Concluding Remarks107

Problems/Tutorial Questions107

CHAPTER 6 TORSION OF BARS114

6.1 Torsion of Bars in Strength of Materials114

6.2 Warping114

6.3 Prandtl's Stress Function119

6.4 Torque120

6.5 Bars of Circular and Elliptical Cross-Sections121

6.6 Thin-Walled Structures in Torsion124

6.7 Analogies127

Problems/Tutorial Questions128

CHAPTER 7 BENDING OF BARS130

7.1 Bending Theory in Strength of Materials130

7.2 Elasticity Formulation of Bending of Bars131

7.3 Stress Resultants and Shear Centre135

7.4 Bending of a Bar of a Circular Cross-Section136

7.5 Bending of a Bar of an Elliptical Cross-Section137

7.6 Analogies138

Problems/Tutorial Questions139

CHAPTER 8 THE STATE SPACE METHOD OF 3D ELASTICITY140

8.1 Concept of State and State Variables140

8.2 Solution for a Linear Time-Invariant System142

8.3 Calculation of e[A]t144

8.4 Solution of Linear Time-Variant System149

8.5 State Variable Equation of Elasticity153

8.6 Application of State Space Method157

8.7 Conclusions166

Problems/Tutorial Questions166

CHAPTER 9 BENDING OF PLATES168

9.1 Love-Kirchhoff Hypotheses168

9.2 The Displacement Fields169

9.3 Strains and Generalised Strains170

9.4 Bending Moments171

9.5 The Governing Equation172

9.6 Generalised Forces173

9.7 Boundary Conditions175

9.8 Rectangular Plates179

9.9 Circular Plates183

Problems/Tutorial Questions188

CHAPTER 10 ENERGY PRINCIPLES191

10.1 Introduction191

10.2 Work,Strain Energy and Strain Complementary Energy191

10.3 Principle of Virtual Work197

10.4 Application of the Principle of Virtual Work200

10.5 The Reciprocal Law of Betti201

10.6 Principle of Minimum Potential Energy203

10.7 Principle of Virtual Complementary Work205

10.8 Principle of Minimum Complementary Energy207

10.9 Castigliano's Theorems208

10.10 Application of the Principles of Minimum Strain Energy211

10.11 Rayleigh-Ritz Method213

Problems/Tutorial Questions216

CHAPTER 11 SPECIAL TOPICS FOR ELASTICITY219

11.1 Thermal Elasticity219

11.2 Propagation of Elastic Waves226

11.3 Strength Theory,Crack and Fracture230

Problems/Tutorial Questions236

REFERENCES238

热门推荐