图书介绍

弹性力学2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

弹性力学
  • 陈国荣编著 著
  • 出版社: 南京:河海大学出版社
  • ISBN:9787563035755
  • 出版时间:2013
  • 标注页数:333页
  • 文件大小:39MB
  • 文件页数:343页
  • 主题词:弹性力学-研究生-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

弹性力学PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 绪论1

1-1 弹性力学的内容1

1-2 弹性力学的发展简介2

1-3 弹性力学中的几个基本概念3

1-4 弹性力学中的基本假定7

习题8

第2章 平面问题的基本理论9

2-1 平面应力问题与平面应变问题9

2-2 平衡微分方程10

2-3 几何方程,刚体位移12

2-4 物理方程14

2-5 边界条件16

2-6 圣维南原理18

2-7 按位移求解平面问题21

2-8 按应力求解平面问题,相容方程22

2-9 常体力情况下的简化25

2-10 应力函数,逆解法与半逆解法28

2-11 斜面上的应力,主应力31

习题34

第3章 平面问题的直角坐标解答35

3-1 多项式解答35

3-2 矩形梁的纯弯曲36

3-3 由应力分量推求位移分量38

3-4 简支梁受均布荷载40

3-5 楔形体受重力和液体压力45

3-6 级数解法47

3-7 简支梁受任意横向荷载49

习题52

第4章 平面问题的极坐标解答54

4-1 极坐标中的平衡微分方程54

4-2 极坐标中的几何方程及物理方程55

4-3 应力分量的坐标变换式58

4-4 极坐标中的应力函数与相容方程60

4-5 平面轴对称应力和相应的位移61

4-6 圆环或圆筒受均布压力,压力隧洞64

4-7 曲梁的纯弯曲68

4-8 圆孔的孔边应力集中71

4-9 楔形体在楔顶或楔面受力75

4-10 半平面体在边界上受法向集中力79

4-11 半平面体在边界上受法向分布力81

习题84

第5章 平面问题的差分解86

5-1 差分公式的推导86

5-2 差分法的简单应用89

5-3 应力函数的差分解92

5-4 应力函数差分解的实例96

习题98

第6章 平面问题的复变函数解法100

6-1 应力函数的复变函数表示100

6-2 应力和位移的复变函数表示101

6-3 各个复变函数确定的程度103

6-4 边界条件的复变函数表示105

6-5 多连体中应力和位移的单值条件106

6-6 无限大多连体的情形109

6-7 保角变换与曲线坐标111

6-8 孔口问题114

6-9 椭圆孔口117

6-10 裂隙附近的应力集中123

6-11 正方形孔口126

习题129

第7章 张量分析131

7-1 指标符号131

7-2 矢量的基本运算134

7-3 坐标变换与张量的定义136

7-4 张量的代数运算139

7-5 二阶张量(仿射量)143

7-6 张量分析147

7-7 曲线坐标中的张量分析150

习题160

第8章 空间问题的基本理论162

8-1 一点的应力状态162

8-2 主应力及应力张量不变量164

8-3 最大及最小的应力166

8-4 平衡微分方程167

8-5 应变张量与转动张量170

8-6 变形的描述174

8-7 一点的应变状态,主应变及应变张量不变量177

8-8 应变协调方程180

8-9 各向同性弹性体的应力应变关系181

习题184

第9章 空间问题的基本解法及弹性力学的一般原理186

9-1 空间问题的位移解法187

9-2 位移势函数188

9-3 伽辽金位移函数191

9-4 空间问题的应力解法193

9-5 应力函数195

9-6 弹性力学的叠加原理198

9-7 弹性力学解的唯一性198

习题200

第10章 空间问题的典型解答201

10-1 半空间体受重力及均布压力201

10-2 空心圆球受均布压力203

10-3 半空间体在边界上受法向集中力204

10-4 半空间体在边界上受切向集中力207

10-5 半空间体在边界上受法向分布力209

10-6 两球体之间的接触压力212

10-7 两弹性体相接触的一般情况215

10-8 等截面直杆的纯弯曲218

10-9 回转体在匀速转动时的应力220

习题223

第11章 等截面直杆的扭转225

11-1 扭转问题中的应力和位移225

11-2 扭转问题的薄膜比拟228

11-3 椭圆截面杆的扭转231

11-4 矩形截面杆的扭转233

11-5 薄壁杆的扭转236

习题239

第12章 热弹性问题241

12-1 关于温度场和热传导的一些概念241

12-2 热传导微分方程243

12-3 温度场的边值条件246

12-4 热弹性力学的基本方程248

12-5 位移势函数251

12-6 用极坐标求解温度应力255

12-7 圆环或圆筒的轴对称温度应力256

12-8 楔形坝体中的温度应力259

习题263

第13章 弹性力学的变分原理265

13-1 变分法的预备知识265

13-2 应变能与余应变能269

13-3 虚位移原理272

13-4 最小势能原理,位移变分方程276

13-5 最小余能原理,应力变分方程278

13-6 广义变分原理280

13-7 变分原理的古典应用举例282

13-8 基于最小势能原理的近似计算285

13-9 基于最小余能原理的近似计算290

习题295

第14章 薄板的小挠度弯曲297

14-1 有关概念及计算假定297

14-2 弹性曲面的微分方程299

14-3 薄板横截面上的内力及应力302

14-4 边界条件,扭矩的等效剪力305

14-5 简单例题309

14-6 简支边矩形薄板的纳维叶解法313

14-7 矩形薄板的李维解及一般解法316

14-8 圆形薄板的弯曲319

14-9 圆形薄板的轴对称弯曲322

习题326

部分参考答案329

参考文献333

热门推荐