图书介绍

计算物理 英文版·第2版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

计算物理 英文版·第2版
  • 乔达诺,纳卡尼什著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302165726
  • 出版时间:2007
  • 标注页数:544页
  • 文件大小:77MB
  • 文件页数:558页
  • 主题词:计算物理学-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

计算物理 英文版·第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 A First Numerical Problem1

1.1 Radioactive Decay1

1.2 A Numerical Approach2

1.3 Design and Construction of a Working Program:Codes and Pseu-docodes3

1.4 Testing Your Program11

1.5 Numerical Considerations12

1.6 Programming Guidelines and Philosophy14

2 Realistic Projectile Motion18

2.1 Bicycle Racing:The Effect of Air Resistance18

2.2 Projectile Motion:The Trajectory of a Cannon Shell25

2.3 Baseball:Motion of a Batted Ball31

2.4 Throwing a Baseball:The Effects of Spin36

2.5 Golf44

3 Oscillatory Motion and Chaos48

3.1 Simple Harmonic Motion48

3.2 Making the Pendulum More Interesting:Adding Dissipation,Non-linearity and a Driving Force54

3.3 Chaos in the Driven Nonlinear Pendulum58

3.4 Routes to Chaos:Period Doubling66

3.5 The Logistic Map:Why the Period Doubles70

3.6 The Lorenz Model75

3.7 The Billiard Problem82

3.8 Behavior in the Frequency Domain:Chaos and Noise88

4 The Solar System94

4.1 Kepler's Laws94

4.2 The Inverse-Square Law and the Stability of Planetary Orbits101

4.3 Precession of the Perihelion of Mercury107

4.4 The Three-Body Problem and the Effect of Jupiter on Earth113

4.5 Resonances in the Solar System:Kirkwood Gaps and Planetary Rings118

4.6 Chaotic Tumbling of Hyperion123

5 Potentials and Fields129

5.1 Electric Potentials and Fields:Laplace's Equation129

5.2 Potentials and Fields Near Electric Charges143

5.3 Magnetic Field Produced by a Current148

5.4 Magnetic Field of a Solenoid:Inside and Out151

6 Waves156

6.1 Waves:The Ideal Case156

6.2 Frequency Spectrum of Waves on a String165

6.3 Motion of a (Somewhat)Realistic String169

6.4 Waves on a String(Again):Spectral Methods174

7 Random Systems181

7.1 Why Perform Simulations of Random Processes?181

7.2 Random Walks183

7.3 Self-Avoiding Walks188

7.4 Random Walks and Diffusion195

7.5 Diffusion,Entropy,and the Arrow of Time201

7.6 Cluster Growth Models206

7.7 Fractal Dimensionalities of Curves212

7.8 Percolation218

7.9 Diffusion on Fractals229

8 Statistical Mechanics,Phase Transitions,and the Ising Model235

8.1 The Ising Model and Statistical Mechanics235

8.2 Mean Field Theory239

8.3 The Monte Carlo Method244

8.4 The Ising Model and Second-Order Phase Transitions246

8.5 First-Order Phase Transitions259

8.6 Scaling264

9 Molecular Dynamics270

9.1 Introduction to the Method:Properties of a Dilute Gas270

9.2 The Melting Transition285

9.3 Equipartition and the Fermi-Pasta-Ulam Problem294

10 Quantum Mechanics303

10.1 Time-Independent Schr?dinger Equation:Some Preliminaries303

10.2 One Dimension:Shooting and Matching Methods307

10.3 A Matrix Approach323

10.4 A Variational Approach326

10.5 Time-Dependent Schr?dinger Equation:Direct Solutions333

10.6 Time-Dependent Schr?dinger Equation in Two Dimensions345

10.7 Spectral Methods349

11 Vibrations,Waves,and the Physics of Musical Instruments357

11.1 Plucking a String:Simulating a Guitar357

11.2 Striking a String:Pianos and Hammers362

11.3 Exciting a Vibrating System with Friction:Violins and Bows367

11.4 Vibrations of a Membrane:Normal Modes and Eigenvalue Problems372

11.5 Generation of Sound382

12 Interdisciplinary Topics389

12.1 Protein Folding389

12.2 Earthquakes and Self-Organized Criticality405

12.3 Neural Networks and the Brain418

12.4 Real Neurons and Action Potentials436

12.5 Cellular Automata445

APPENDICES456

A Ordinary Differential Equations with Initial Values456

A.1 First-Order,Ordinary Differential Equations456

A.2 Second-Order,Ordinary Differential Equations460

A.3 Centered Difference Methods464

A.4 Summary467

B Root Finding and Optimization469

B.1 Root Finding469

B.2 Direct Optimization472

B.3 Stochastic Optimization473

C The Fourier Transform479

C.1 Theoretical Background479

C.2 Discrete Fourier Transform481

C.3 Fast Fourier Transform (FFT)483

C.4 Examples:Sampling Interval and Number of Data Points486

C.5 Examples:Aliasing488

C.6 Power Spectrum490

D Fitting Data to a Function493

D.1 Introduction493

D.2 Method of Least Squares:Linear Regression for Two Variables494

D.3 Method of Least Squares:More General Cases497

E Numerical Integration500

E.1 Motivation500

E.2 Newton-Cotes Methods:Using Discrete Panels to Approximate an Integral500

E.3 Gaussian Quadrature:Beyond Classic Methods of Numerical Inte-gration504

E.4 Monte Carlo Integration506

F Generation of Random Numbers512

F.1 Linear Congruential Generators512

F.2 Nonuniform Random Numbers516

G Statistical Tests of Hypotheses520

G.1 Central Limit Theorem and the x2 Distribution521

G.2 x2 Test of a Hypothesis523

H Solving Linear Systems527

H.1 Solving Ax=b,b≠O528

H.1.1 Gaussian Elimination528

H.1.2 Gauss-Jordan elimination530

H.1.3 LU decomposition531

H.1.4 Relaxational method533

H.2 Eigenvalues and Eigenfunctions535

H.2.1 Approximate Solution of Eigensystems537

Index541

热门推荐