图书介绍

泛函分析 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

泛函分析 英文版
  • (美)斯坦恩著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:9787510050350
  • 出版时间:2013
  • 标注页数:423页
  • 文件大小:79MB
  • 文件页数:442页
  • 主题词:泛函分析-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

泛函分析 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.Lp Spaces and Banach Spaces1

1 Lp spaces2

1.1 The H?lder and Minkowski inequalities3

1.2 Completeness of Lp5

1.3 Further remarks7

2 The case p=∞7

3 Banach spaces9

3.1 Examples9

3.2 Linear functionals and the dual of a Banach space11

4 The dual space of Lp when 1≤p<∞13

5 More about linear functionals16

5.1 Separation of convex sets16

5.2 The Hahn-Banach Theorem20

5.3 Some consequences21

5.4 The problem of measure23

6 Complex Lp and Banach spaces27

7 Appendix:The dual of C(X)28

7.1 The case of positive linear functionals29

7.2 The main result32

7.3 An extension33

8 Exercises34

9 Problems43

Chapter 2.Lp Spaces in Harmonic Analysis47

1 Early Motivations48

2 The Riesz interpolation theorem52

2.1 Some examples57

3 The Lp theory of the Hilbert transform61

3.1 The L2 formalism61

3.2 The Lp theorem64

3.3 Proof of Theorem 3.266

4 The maximal function and weak-type estimates70

4.1 The Lp inequality71

5 The Hardy space Hl r73

5.1 Atomic decomposition of Hl r74

5.2 An alternative definition of Hl r81

5.3 Application to the Hilbert transform82

6 The space Hl r and maximal functions84

6.1 The space BMO86

7 Exercises90

8 Problems94

Chapter 3.Distributions:Generalized Functions98

1 Elementary properties99

1.1 Definitions100

1.2 Operations on distributions102

1.3 Supports of distributions104

1.4 Tempered distributions105

1.5 Fourier transform107

1.6 Distributions with point supports110

2 Important examples of distributions111

2.1 The Hilbert transform and pv(1/x)111

2.2 Homogeneous distributions115

2.3 Fundamental solutions125

2.4 Fundamental solution to general partial differential equations with constant coefficients129

2.5 Parametrices and regularity for elliptic equations131

3 Calderón-Zygmund distributions and Lp estimates134

3.1 Defining properties134

3.2 The Lp theory138

4 Exercises145

5 Problems153

Chapter 4.Applications of the Baire Category Theorem157

1 The Baire category theorem158

1.1 Continuity of the limit of a sequence of continuous functions160

1.2 Continuous functions that are nowhere differentiable163

2 The uniform boundedness principle166

2.1 Divergence of Fourier series167

3 The open mapping theorem170

3.1 Decay of Fourier coefficients of L1-functions173

4 The closed graph theorem174

4.1 Grothendieck's theorem on closed subspaces of Lp174

5 Besicovitch sets176

6 Exercises181

7 Problems185

Chapter 5.Rudiments of Probability Theory188

1 Bernoulli trials189

1.1 Coin flips189

1.2 The case N=∞191

1.3 Behavior of SN as N→∞,first results194

1.4 Central limit theorem195

1.5 Statement and proof of the theorem197

1.6 Random series199

1.7 Random Fourier series202

1.8 Bernoulli trials204

2 Sums of independent random variables205

2.1 Law of large numbers and ergodic theorem205

2.2 The role of martingales208

2.3 The zero-one law215

2.4 The central limit theorem215

2.5 Random variables with values in Rd220

2.6 Random walks222

3 Exercises227

4 Problems235

Chapter 6.An Introduction to Brownian Motion238

1 The Framework239

2 Technical Preliminaries241

3 Construction of Brownian motion246

4 Some further properties of Brownian motion251

5 Stopping times and the strong Markov property253

5.1 Stopping times and the Blumenthal zero-one law254

5.2 The strong Markov property258

5.3 Other forms of the strong Markov Property260

6 Solution of the Dirichlet problem264

7 Exercises268

8 Problems273

Chapter 7.A Glimpse into Several Complex Variables276

1 Elementary properties276

2 Hartogs' phenomenon:an example280

3 Hartogs'theorem:the inhomogeneous Cauchy-Riemann equations283

4 A boundary version:the tangential Cauchy-Riemann equa-tions288

5 The Levi form293

6 A maximum principle296

7 Approximation and extension theorems299

8 Appendix:The upper half-space307

8.1 Hardy space308

8.2 Cauchy integral311

8.3 Non-solvability313

9 Exercises314

10 Problems319

Chapter 8.Oscillatory Integrals in Fourier Analysis321

1 An illustration322

2 Oscillatory integrals325

3 Fourier transform of surface-carried measures332

4 Return to the averaging operator337

5 Restriction theorems343

5.1 Radial functions343

5.2 The problem345

5.3 The theorem345

6 Application to some dispersion equations348

6.1 The Schr?dinger equation348

6.2 Another dispersion equation352

6.3 The non-homogeneous Schr?dinger equation355

6.4 A critical non-linear dispersion equation359

7 A look back at the Radon transform363

7.1 A variant of the Radon transform363

7.2 Rotational curvature365

7.3 Oscillatory integrals367

7.4 Dyadic decomposition370

7.5 Almost-orthogonal sums373

7.6 Proof of Theorem 7.1374

8 Counting lattice points376

8.1 Averages of arithmetic functions377

8.2 Poisson summation formula379

8.3 Hyperbolic measure384

8.4 Fourier transforms389

8.5 A summation formula392

9 Exercises398

10 Problems405

Notes and References409

Bibliography413

Symbol Glossary417

Index419

热门推荐