图书介绍
泛函分析 英文版2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- (美)斯坦恩著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510050350
- 出版时间:2013
- 标注页数:423页
- 文件大小:79MB
- 文件页数:442页
- 主题词:泛函分析-教材-英文
PDF下载
下载说明
泛函分析 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.Lp Spaces and Banach Spaces1
1 Lp spaces2
1.1 The H?lder and Minkowski inequalities3
1.2 Completeness of Lp5
1.3 Further remarks7
2 The case p=∞7
3 Banach spaces9
3.1 Examples9
3.2 Linear functionals and the dual of a Banach space11
4 The dual space of Lp when 1≤p<∞13
5 More about linear functionals16
5.1 Separation of convex sets16
5.2 The Hahn-Banach Theorem20
5.3 Some consequences21
5.4 The problem of measure23
6 Complex Lp and Banach spaces27
7 Appendix:The dual of C(X)28
7.1 The case of positive linear functionals29
7.2 The main result32
7.3 An extension33
8 Exercises34
9 Problems43
Chapter 2.Lp Spaces in Harmonic Analysis47
1 Early Motivations48
2 The Riesz interpolation theorem52
2.1 Some examples57
3 The Lp theory of the Hilbert transform61
3.1 The L2 formalism61
3.2 The Lp theorem64
3.3 Proof of Theorem 3.266
4 The maximal function and weak-type estimates70
4.1 The Lp inequality71
5 The Hardy space Hl r73
5.1 Atomic decomposition of Hl r74
5.2 An alternative definition of Hl r81
5.3 Application to the Hilbert transform82
6 The space Hl r and maximal functions84
6.1 The space BMO86
7 Exercises90
8 Problems94
Chapter 3.Distributions:Generalized Functions98
1 Elementary properties99
1.1 Definitions100
1.2 Operations on distributions102
1.3 Supports of distributions104
1.4 Tempered distributions105
1.5 Fourier transform107
1.6 Distributions with point supports110
2 Important examples of distributions111
2.1 The Hilbert transform and pv(1/x)111
2.2 Homogeneous distributions115
2.3 Fundamental solutions125
2.4 Fundamental solution to general partial differential equations with constant coefficients129
2.5 Parametrices and regularity for elliptic equations131
3 Calderón-Zygmund distributions and Lp estimates134
3.1 Defining properties134
3.2 The Lp theory138
4 Exercises145
5 Problems153
Chapter 4.Applications of the Baire Category Theorem157
1 The Baire category theorem158
1.1 Continuity of the limit of a sequence of continuous functions160
1.2 Continuous functions that are nowhere differentiable163
2 The uniform boundedness principle166
2.1 Divergence of Fourier series167
3 The open mapping theorem170
3.1 Decay of Fourier coefficients of L1-functions173
4 The closed graph theorem174
4.1 Grothendieck's theorem on closed subspaces of Lp174
5 Besicovitch sets176
6 Exercises181
7 Problems185
Chapter 5.Rudiments of Probability Theory188
1 Bernoulli trials189
1.1 Coin flips189
1.2 The case N=∞191
1.3 Behavior of SN as N→∞,first results194
1.4 Central limit theorem195
1.5 Statement and proof of the theorem197
1.6 Random series199
1.7 Random Fourier series202
1.8 Bernoulli trials204
2 Sums of independent random variables205
2.1 Law of large numbers and ergodic theorem205
2.2 The role of martingales208
2.3 The zero-one law215
2.4 The central limit theorem215
2.5 Random variables with values in Rd220
2.6 Random walks222
3 Exercises227
4 Problems235
Chapter 6.An Introduction to Brownian Motion238
1 The Framework239
2 Technical Preliminaries241
3 Construction of Brownian motion246
4 Some further properties of Brownian motion251
5 Stopping times and the strong Markov property253
5.1 Stopping times and the Blumenthal zero-one law254
5.2 The strong Markov property258
5.3 Other forms of the strong Markov Property260
6 Solution of the Dirichlet problem264
7 Exercises268
8 Problems273
Chapter 7.A Glimpse into Several Complex Variables276
1 Elementary properties276
2 Hartogs' phenomenon:an example280
3 Hartogs'theorem:the inhomogeneous Cauchy-Riemann equations283
4 A boundary version:the tangential Cauchy-Riemann equa-tions288
5 The Levi form293
6 A maximum principle296
7 Approximation and extension theorems299
8 Appendix:The upper half-space307
8.1 Hardy space308
8.2 Cauchy integral311
8.3 Non-solvability313
9 Exercises314
10 Problems319
Chapter 8.Oscillatory Integrals in Fourier Analysis321
1 An illustration322
2 Oscillatory integrals325
3 Fourier transform of surface-carried measures332
4 Return to the averaging operator337
5 Restriction theorems343
5.1 Radial functions343
5.2 The problem345
5.3 The theorem345
6 Application to some dispersion equations348
6.1 The Schr?dinger equation348
6.2 Another dispersion equation352
6.3 The non-homogeneous Schr?dinger equation355
6.4 A critical non-linear dispersion equation359
7 A look back at the Radon transform363
7.1 A variant of the Radon transform363
7.2 Rotational curvature365
7.3 Oscillatory integrals367
7.4 Dyadic decomposition370
7.5 Almost-orthogonal sums373
7.6 Proof of Theorem 7.1374
8 Counting lattice points376
8.1 Averages of arithmetic functions377
8.2 Poisson summation formula379
8.3 Hyperbolic measure384
8.4 Fourier transforms389
8.5 A summation formula392
9 Exercises398
10 Problems405
Notes and References409
Bibliography413
Symbol Glossary417
Index419
热门推荐
- 965653.html
- 2590468.html
- 437183.html
- 3705128.html
- 268692.html
- 2712415.html
- 3084550.html
- 966355.html
- 3901190.html
- 1462968.html
- http://www.ickdjs.cc/book_2460652.html
- http://www.ickdjs.cc/book_525327.html
- http://www.ickdjs.cc/book_2192540.html
- http://www.ickdjs.cc/book_2890997.html
- http://www.ickdjs.cc/book_3265644.html
- http://www.ickdjs.cc/book_2589986.html
- http://www.ickdjs.cc/book_3575369.html
- http://www.ickdjs.cc/book_978686.html
- http://www.ickdjs.cc/book_813130.html
- http://www.ickdjs.cc/book_1748089.html