图书介绍
Mechanical Vibrations2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

- Tomasz Krysinski 著
- 出版社: Dover Publications
- ISBN:1905209293
- 出版时间:1985
- 标注页数:368页
- 文件大小:29MB
- 文件页数:391页
- 主题词:
PDF下载
下载说明
Mechanical VibrationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ.Sources of Vibrations1
Chapter 1.Unbalance and Gyroscopic Effects5
1.1.Introduction5
1.1.1.Physico-mathematical model of a rotating system7
1.1.2.Formation of equations and analysis7
1.2.Theory of balancing10
1.2.1.Balancing machine or “balancer”12
1.2.1.1.The soft-bearing machine12
1.2.1.2.The hard-bearing machine17
1.2.2.Balancing in situ17
1.2.2.1.The method of separate planes19
1.2.2.2.The method of simultaneous planes - influence coefficients24
1.2.3.Example of application:the main rotor of a helicopter26
1.2.3.1.Bench test phase on the ground27
1.2.3.2.Test phase on a helicopter in flight30
1.3.Influence of shaft bending32
1.3.1.The notion of critical speed33
1.3.2.Forward precession of the flexible shaft38
1.3.2.1.Subcritical speed (Ω <ωcr)39
1.3.2.2.Resonance (Ω = ωcr)41
1.3.2.3.Supercritical speed (Ω > ωcr)41
1.3.3.Balancing flexible shafts42
1.3.4.Example of application:transmission shaft of the tail rotor of a helicopter44
1.4.Gyroscopic effects44
1.4.1.Forward or backward motion44
1.4.2.Equations of motion47
1.4.2.1.Natural angular frequencies (shaft off motion)51
1.4.2.2.Critical speeds during forward precession51
1.4.2.3.Critical speeds during retrograde precession51
Chapter 2.Piston Engines53
2.1.Introduction53
2.2.Excitations generated by a piston engine54
2.2.1.Analytic determination of an engine torque55
2.2.2.Engine excitations on the chassis frame59
2.2.2.1.Knocking load60
2.2.2.2.Pitch torque63
2.2.2.3.Review of actions for a four phase cylinder engine64
2.2.3.The notion of engine balancing64
2.2.3.1.Balancing the knocking loads64
2.2.3.2.Balancing the galloping torque67
2.3.Line shafting tuning67
2.3.1.The notion of tuning67
2.3.2.Creation of the equations68
2.3.3.Line shafting optimization71
2.3.3.1.Results for a non-optimized line shafting71
2.3.3.2.Results for an optimized line shafting73
Chapter 3.Dynamics of a Rotor75
3.1.Introduction75
3.2.Description of the blade/hub relationship75
3.2.1.Some historical data75
3.2.2.Hinge link of the blade and the hub76
3.2.2.1.Formation of the equations for blade motion77
3.2.2.2.Homokinetic rotor86
3.3.Rotor technologies87
3.3.1.Articulated rotors88
3.3.1.1.Conventional articulated rotors88
3.3.1.2.Starflex?and Spheriflex?rotors89
3.3.2.Hingeless rotors91
3.3.3.Hingeless rotor92
3.4.Influence of alternate aerodynamic loads93
3.4.1.Load characterization94
3.4.1.1.Loads on a blade94
3.4.1.2.Dynamic response of a blade99
3.4.1.3.Loads transmitted by a mode i100
3.4.2.Analysis of loads transmitted to the rotor hub102
3.4.2.1.Loads transmitted to the rotor103
3.4.2.2.Synthesis of rotor loads on the rotor mast109
3.4.3.Dynamic optimization of a blade111
3.4.3.1.Introduction111
3.4.3.2.Study of the example of an optimized blade111
3.4.3.3.Contribution of the second flapping mode116
Chapter 4.Rotor Control119
4.1.Introduction119
4.2.Blade motions121
4.2.1.Flapping equation - general case121
4.2.2.The case of a rotor without eccentricity and flapping stiffness123
4.3.Control through cyclic and collective swashplates127
4.4.Control through flaps129
4.4.1.Description129
4.4.2.Modeling131
4.4.2.1.Flapping equation131
4.4.2.2.Torsion equation134
4.4.3.Ways to control the blade136
Chapter 5.Non-Homokinetic Couplings141
5.1.Introduction141
5.2.Analysis of operation142
5.2.1.Parametric transformation143
5.2.2.Effects of non-homokinetics:modulation of acceleration144
5.2.3.Effects of non-homokinetics:variation of the motor torque146
5.3.Solutions to make the link homokinetic150
5.3.1.Double Cardan150
5.3.2.Introduction of high flexibility151
5.3.3.Homokinetic drive system of a tilt rotor152
Chapter 6.Aerodynamic Excitations159
6.1.Introduction159
6.2.Excitations caused by the Karman vortices - fuselage effects160
6.3.Aerodynamic excitations generated by the main rotor of a helicopter164
6.4.Practical solutions for tail-shake168
PARTⅡ.Vibration Monitoring Systems171
Chapter 7.Suspensions177
7.1.Introduction177
7.2.Filtering effects of the interface link177
7.2.1.Stiffness modification for an excitation in force177
7.2.1.1.Modeling177
7.2.1.2.Response to a harmonic excitation179
7.2.1.3.Response to an unbalanced excitation183
7.2.2.Stiffness modification for displacement excitation185
7.2.2.1.Modeling186
7.2.2.2.Analysis of the results187
7.2.2.3.Example:vehicle suspension188
7.2.3.Damping modification190
7.2.3.1.Principle190
7.2.3.2.Modeling191
7.2.4.Complex case of the rotor/fuselage link of a helicopter195
7.3.Acting on the interface through kinematic coupling202
7.3.1.The example of the DAVI system202
7.3.1.1.Principle202
7.3.1.2.Formulation of the equations203
7.3.1.3.Implementation206
7.3.1.4.Experimental analysis207
7.3.2.Example of the Aris system209
7.3.2.1.Mechanical system209
7.3.2.2.Hydraulic system210
7.3.3.Example of a fluid inertia resonator214
7.3.3.1.Principle214
7.3.3.2.Formation of the equations214
7.3.3.3.Example of application:integration of the system on a helicopter216
Chapter 8.Self-Tuning Systems219
8.1.Introduction219
8.2.Modification of link characteristics (stiffness or damping)220
8.3.Modification of the kinematic coupling:example of self-tuning Sarib?221
8.3.1.Modeling of the suspension behavior222
8.3.1.1.Degrees of freedom of the system222
8.3.1.2.Formulation of the equations224
8.3.1.3.Analysis of the general behavior of the suspension225
8.3.1.4.Conclusion227
8.3.2.Presentation of the control algorithm228
8.3.3.Performances231
8.3.3.1.Simulation and behavior analysis231
8.3.3.2.Tests conducted on a model234
8.3.3.3.Flight tests on a real structure237
Chapter 9.Active Suspensions239
9.1.Principle239
9.2.Formulation of system equations and analysis of the system240
9.3.Technological application244
Chapter 10.Absorbers253
10.1.Introduction253
10.2.Optimization of the structure253
10.3.Dynamic absorbers254
10.3.1.Coupling with preponderant stiffness255
10.3.1.1.Translation system255
10.3.1.2.Rotating system:torsion resonator264
10.3.2.Coupling using damping and stiffness266
10.3.2.1.Operation of the equations266
10.3.2.2.Tuning method270
10.3.2.3.Industrial application:resonator used on a helicopter for the tail boom vibrations272
10.3.2.4.Industrial application:resonator for torsion movements274
10.3.3.Coupling with preponderant damping274
Chapter 11.Self-Adjusting Absorbers279
11.1.Introduction279
11.2.Implementation279
11.3.System coupling281
11.3.1.Analog algorithm281
11.3.2.Digital algorithm282
Chapter 12.Active Absorbers289
12.1.Introduction289
12.2.Active control with a resonator289
12.2.1.Electromagnetic actuator290
12.2.1.1.Single stage resonator290
12.2.1.2.Two-stage electromagnetic resonator295
12.2.2.Hydraulic actuator300
12.2.2.1.Technological principle300
12.2.2.2.Control algorithm303
12.2.2.3.Results of lab tests304
12.3.Active control through external loads305
12.3.1.Mechanical load generator305
12.3.1.1.Description of the mechanism305
12.3.1.2.Positioning of the generator307
12.3.2.Active control through the anti-torque rotor309
Chapter 13.Resonators319
13.1.Introduction319
13.2.Kinematic coupling319
13.2.1.Pendular masses319
13.2.1.1.Principle319
13.2.1.2.Modeling320
13.2.1.3.Analysis of the results323
13.2.2.Coplanar resonators323
13.3.Stiffness coupling325
13.3.1.Principle325
13.3.2.Modeling327
13.3.3.Forced response of the system331
13.3.4.Analysis of the results332
Chapter 14.Self-Adapting Resonators335
14.1.Introduction335
14.2.Acting near the source:hub resonator335
14.2.1.Principle335
14.2.2.Control algorithm339
14.2.2.1 Type 1 controller339
14.2.2.2 Type 2 controller339
14.2.3.Experiment340
Chapter 15.Active Systems343
15.1.Introduction343
15.2.Principle of the active system in the fixed frame of reference345
15.2.1.Principle345
15.2.2.Control algorithm346
15.2.3.Experiment349
15.2.4.Conclusions350
15.3.Principle of the active system in a rotating frame of reference350
15.3.1.Introduction350
15.3.2.Individual blade control352
15.3.2.1.Principle352
15.3.2.2.Design352
15.3.2.3.Hydraulic actuators of the IBC system353
15.3.2.4.Implementation353
15.3.3.Individual control by servo-flaps354
15.3.3.1.Principle of the rotor with blade flaps operated by piezoelectric actuators354
15.3.3.2.Technological solutions355
Bibliography359
Index365
热门推荐
- 2694785.html
- 1817889.html
- 1980807.html
- 1066958.html
- 812591.html
- 137677.html
- 1022855.html
- 1561386.html
- 1582210.html
- 382180.html
- http://www.ickdjs.cc/book_2177677.html
- http://www.ickdjs.cc/book_3394113.html
- http://www.ickdjs.cc/book_3345814.html
- http://www.ickdjs.cc/book_948863.html
- http://www.ickdjs.cc/book_536924.html
- http://www.ickdjs.cc/book_2572812.html
- http://www.ickdjs.cc/book_1583757.html
- http://www.ickdjs.cc/book_1102504.html
- http://www.ickdjs.cc/book_3329373.html
- http://www.ickdjs.cc/book_3870060.html