图书介绍

过程设计原理-合成、分析和评估:英文2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载

过程设计原理-合成、分析和评估:英文
  • (美)塞德(Sandler,W.D.)等著 著
  • 出版社: 北京:化学工业出版社
  • ISBN:7502532706
  • 出版时间:2002
  • 标注页数:824页
  • 文件大小:146MB
  • 文件页数:843页
  • 主题词:理论化学

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

过程设计原理-合成、分析和评估:英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part One PROCESS INVENTION—HEURISTICS AND ANALYSIS3

1.The Design Process3

1.0 Objectives3

1.1 Primitive Design Problems3

Typical Primitive Design Problem5

Process Design Team5

Industrial Consultants5

1.2 Steps in Designing and Retrofitting Chemical Processes6

Assess Primitive Problem6

Survey Literature8

Process Creation10

Development of Base Case10

Detailed Process Synthesis Using Algorithmic Methods11

Plantwide Controllability Assessment11

Detailed Design,Equipment Sizing and Cost Estimation,Profitability Analysis,and Optimization12

Written Process Design Report and Oral Presentation12

Final Design,Construction,Start-up,and Operation12

Summary13

1.3 Environmental Protection13

Environmental Issues13

Environmental Factors in Process Design15

Environmental Design Problems18

1.4 Safety Considerations19

Safety Issues19

Design Approaches Toward Safe Chemical Plants22

1.5 Engineering Ethics23

1.6 Role of Computers27

Spreadsheets28

Mathematical Packages28

Process Simulators28

Computational Guidelines30

1.7 Summary30

References31

2.Process Creation32

2.0 Objectives32

2.1 Introduction32

2.2 Preliminary Database Creation32

Thermophysical Property Data33

Environmental and Safety Data37

Chemical Prices37

Summary38

2.3 Experiments38

2.4 Preliminary Process Synthesis38

Continuous or Batch Processing39

Chemical State41

Process Operations42

Synthesis Steps44

Example of Process Synthesis:Manufacture of Vinyl Chloride45

Synthesis Tree56

Heuristics56

Algorithmic Methods57

2.5 Development of the Base-Case Design57

Detailed Process Flowsheet57

Process Integration60

Detailed Database60

Pilot-Plant Testing61

Process Simulation62

2.6 Summary62

References62

Exercises63

3.Simulation to Assist in Process Creation64

3.0 Objectives64

3.1 Introduction65

3.2 Principles of Flowsheet Simulation66

Process and Simulation Flowsheets66

Unit Subroutines77

Calculation Order79

Recycle79

Recycle Convergence Methods87

Flash with Recycle Problem89

Degrees of Freedom90

Control Blocks—Design Specifications91

Flash Vessel Control94

Bidirectional Information Flow(HYSYS)94

3.3 Synthesis of the Toluene Hydrodealkylation Process98

Process Simulation101

3.4 Simulation of the Monochlorobenzene Separation Process104

Use of Process Simulators105

3.5 Summary106

References107

Exercises107

4.Heuristics for Process Synthesis112

4.0 Objectives112

4.1 Introduction113

4.2 Raw Materials and Chemical Reactions114

4.3 Distribution of Chemicals116

Inert Species117

Purge Streams119

Recycle to Extinction122

Selectivity123

Reactive Separations125

4.4 Separations126

4.5 Heat Removal from and Addition to Reactors128

Heat Removal from Exothermic Reactors128

Heat Addition to Endothermic Reactors131

4.6 Pumping and Compression132

4.7 Summary134

References134

Exercises135

Part Two DETAILED PROCESS SYNTHESIS—ALGORITHMIC METHODS141

5.Synthesis of Separation Trains141

5.0 Objectives141

5.1 Introduction141

5.2 Criteria for Selection of Separation Methods145

5.3 Selection of Equipment148

5.4 Sequencing of Ordinary Distillation Columns150

5.5 Sequencing of General Vapor-Liquid Separation Processes156

5.6 Sequencing of Azeotropic Distillation Columns170

Azeotropy and Polyazeotropy170

Residue Curves175

Distillation Towers178

Separation Train Synthesis188

5.7 Separation Systems for Gas Mixtures194

Membrane Separation by Gas Permeation197

Adsorption197

Absorption198

Partial Condensation and Cryogenic Distillation199

5.8 Separation Sequencing for Solid-Fluid Systems199

5.9 Summary201

References201

Exercises202

6.Second Law Analysis207

6.0 Objectives207

6.1 Introduction207

6.2 The System and the Surroundings210

6.3 Energy Transfer212

6.4 Thermodynamic Properties213

6.5 Equations for Second Law Analysis215

6.6 Examples of Lost-Work Calculations219

6.7 Thermodynamic Efficiency222

6.8 Causes of Lost Work223

6.9 Three Examples of Second Law Analysis224

6.10 Summary237

References237

Exercises238

7.Heat and Power Integration243

7.0 Objectives243

7.1 Introduction244

Heat Integration Software247

7.2 Minimizing Utilities in Heat Integration247

Temperature-Interval Method248

Using Graphical Displays251

Linear Programming Method254

7.3 Stream Matching at Minimum Utilities256

Stream Matching at the Pinch256

Stream Matching Using a Mixed-Integer Linear Program263

7.4 Minimum Number of Heat Exchangers—Breaking Heat Loops267

7.5 Optimum Approach Temperature271

7.6 Superstructures for Minimization of Annualized Cost274

7.7 Heat-Integrated Distillation Trains279

Effect of Pressure on Heat Integration279

Multiple-Effect Distillation281

Heat Pumping,Vapor Recompression,and Reboiler Flashing284

Superstructures for Minimization of Annualized Cost284

7.8 Heat Engines and Heat Pumps286

Positioning Heat Engines and Heat Pumps289

Optimal Design292

7.9 Summary295

References295

Exercises296

Part Three DETAILED DESIGN,EQUIPMENT SIZING,ECONOMICS,AND OPTIMIZATION303

8.Heat Exchanger Design303

8.0 Objectives303

8.1 Introduction303

Heat Duty303

Heat Transfer Media305

Temperature-Driving Force for Heat Transfer308

Pressure Drop312

8.2 Equipment for Heat Exchange312

Double-Pipe Heat Exchangers312

Shell-and-Tube Heat Exchangers314

Air-Cooled Heat Exchangers319

Compact Heat Exchangers320

Temperature-Driving Forces in Shell-and-Tube Heat Exchangers321

8.3 Heat Transfer Coefficients and Pressure Drop326

Estimation of Overall Heat Transfer Coefficients327

Estimation of Individual Heat Transfer Coefficients and Frictional Pressure Drop327

Turbulent Flow in Straight,Smooth Ducts,Pipes,and Tubes of Circular Cross Section329

Turbulent Flow in the Annular Region Between Straight,Smooth,Concentric Pipes of Circular Cross Section331

Turbulent Flow on the Shell Side of Shell-and-Tube Heat Exchangers331

Heat Transfer Coefficients for Laminar-Flow,Condensation,Boiling,and Compact Heat Exchangers332

8.4 Design of Shell-and-Tube Heat Exchangers333

8.5 Summary335

References335

Exercises336

9.Capital Cost Estimation338

9.0 Objectives338

9.1 Introduction338

9.2 Cost Charts339

Cost Indices342

Installation Costs342

Materials and Pressure Considerations344

Equipment Sizes344

Other Investment Costs345

Lang Factor Method348

9.3 Equations348

Heat Exchangers348

Cylindrical Process Vessels349

Trays349

Blowers and Compressors349

9.4 ASPEN PLUS351

Project Dates353

Equipment Lists353

Equipment Size and Cost Specifications356

Remaining Investment Costs361

Cost Indices363

Results364

9.5 Detailed Cost Estimation368

9.6 Summary369

References369

Exercises370

10.Profitability Analysis374

10.0 Objectives374

10.1 Introduction374

10.2 Cost Sheet375

10.3 Total Capital Investment and Approximate Profitability Measures378

Working Capital378

Approximate Profitability Measures378

10.4 Time Value of Money384

Compound Interest384

Annuities386

Comparison of Equipment Purchases388

10.5 Cash Flow391

Depreciation392

Profitability Measures393

Net Present Value393

Investor's Rate of Return394

10.6 ASPEN PLUS396

Cost Sheet396

Working Capital401

Profitability Measures401

Results404

10.7 Detailed Cost Estimation408

10.8 Summary408

References409

Exercises409

11.Optimization of Process Flowsheets416

11.0 Objectives416

11.1 Introduction416

11.2 Nonlinear Program417

Objective Function417

Equality Constraints418

Inequality Constraints418

General Formulation419

11.3 Optimization Algorithm419

Repeated Simulation421

Infeasible Path Approach421

Compromise Approach422

Practical Aspects of Flowsheet Optimization422

11.4 Flowsheet Optimizations—Case Studies423

11.5 ASPEN PLUS425

Entering the NLP425

Adjusting the Simulation Flowsheet426

11.6 Summary433

References433

Exercises433

Part Four PLANTWIDE CONTROLLABILITY ASSESSMENT439

12.Interaction of Process Design and Process Control439

12.0 Objectives439

12.1 Introduction439

12.2 Control System Configuration444

Classification of Process Variables444

Degrees-of-Freedom Analysis446

12.3 Qualitative Plantwide Control System Synthesis449

12.4 Summary454

References456

Exercises456

13.Flowsheet Controllability Analysis457

13.0 Objectives457

13.1 Quantitative Measures for Controllability and Resiliency458

Relative-Gain Array(RGA)459

Disturbance Cost and Disturbance Condition Number467

13.2 Toward Automated Flowsheet C&R Diagnosis471

Short-Cut C&R Diagnosis471

Generating Low-Order Dynamic Models472

Tutorial:C&R Analysis for Heat-Integrated Distillation Columns474

13.3 Case Studies480

13.4 MATLAB for C&R Analysis493

13.5 Summary496

References496

Exercises497

14.Dynamic Simulation of Process Flowsheets500

14.0 Objectives500

14.1 Fundamental Concepts in Dynamic Simulation500

14.2 Dynamic Simulation Using HYSYS501

14.3 Control-Loop Definition502

14.4 Controller Tuning Methods504

On-Line PI Controller Tuning504

Model-Based PI Controller Tuning505

14.5 Tutorial Exercise:Control of a Binary Distillation Column509

14.6 Case Studies522

14.7 Summary532

References532

Exercises532

Part Five DESIGN REPORT537

15.Written Process Design Report and Oral Presentation537

15.0 Objectives537

15.1 Written Report538

Sections of the Report538

Preparation of the Written Report543

Page Format544

Sample Design Reports545

15.2 Oral Design Presentation546

Typical Presentation546

Media for the Presentation546

Rehearsing the Presentation547

Written Handout547

Evaluation of the Oral Presentation547

Videotapes549

15.3 Award Competition549

15.4 Summary549

References549

APPENDIXES551

Ⅰ.ASPEN PLUS in Process Design551

A-Ⅰ.1 ASPEN PLUS Input Forms551

A-Ⅰ.2 Drawing an ASPEN PLUS Flowsheet553

A-Ⅰ.3 ASPEN PLUS Paragraphs553

A-Ⅰ.4 Nested Recycle Loops554

A-Ⅰ.5 Design Specifications557

A-Ⅰ.6 Inline FORTRAN559

A-Ⅰ.7 Case Study:Monochlorobenzene Separation Process565

ASPEN PLUS Simulation Flowsheet and Input565

Interpretation of Program Output565

Ⅱ.HYSYS in Process Design581

A-Ⅱ.1 The HYSYS Modeling Environment581

A-Ⅱ.2 Steady-State Simulation584

Acyclic Processes584

Processes Involving Recycle605

Subflowsheets609

Multistage Separation Using the Column Subflowsheet609

Optimization618

A-Ⅱ.3 Case Study627

References629

Ⅲ.Phase Equilibria and Process Unit Models630

A-Ⅲ.1 Phase Equilibria630

A-Ⅲ.2 Flash Vessels630

A-Ⅲ.3 Pumps642

A-Ⅲ.4 Compressors and Expanders644

A-Ⅲ.5 Heat Exchangers646

Heat Requirement Models647

Shell-and-Tube Heat Exchangers647

A-Ⅲ.6 Chemical Reactors651

Stoichiometric Reactor Models652

Equilibrium Reactor Models654

Kinetic Reactor Models655

A-Ⅲ.7 Separators666

Split-Fraction(Black Box)Models667

Distillation:Fenske(Winn)-Underwood-Gilliland Shortcut Design667

Distillation:Edmister Approximate Group Method672

Distillation:Rigorous Simulation Using the Unabridged MESH Equations673

References679

Ⅳ.Physical Property Estimation,Solids Handling,and Electrolytes680

A-Ⅳ.1 Physical Property Estimation680

Data Banks680

Property Estimation681

ASPEN PLUS686

Estimating Parameters for Pure Species690

Selection of Property Estimation Methods and Property Data Regression692

A-Ⅳ.2 Nonconventional Components and Substreams698

Substreams700

Stream Classes702

A-Ⅳ.3 Solids Handling703

A-Ⅳ.4 Electrolytes709

Chemical and Phase Equilibrium709

Electrolytes in Process Simulators716

References720

Ⅴ.Residue Curves for Heterogeneous Systems722

Ⅵ.Successive Quadratic Programming723

A-Ⅵ.1 NLP and Stationarity Conditions723

A-Ⅵ.2 Solution of the Stationarity Equations724

References725

Ⅶ.General Algebraic Modeling Systems(GAMS)726

A-Ⅶ.1 Input File727

Statements728

A-Ⅶ.2 Expanded Features:Documentation,Variable Redeclaration,and Display730

A-Ⅶ.3 Expanded Features:Sets,Tables,Parameters and Scalars,and Equation Grouping734

A-Ⅶ.4 Debugging737

References739

Ⅷ.Design Problem Statements740

A-Ⅷ.0 Contents and Introduction740

A-Ⅷ.1 Petrochemicals742

A-Ⅷ.2 Petroleum Products748

A-Ⅷ.3 Gas Manufacture749

A-Ⅷ.4 Foods752

A-Ⅷ.5 Pharmaceuticals754

A-Ⅷ.6 Polymers755

A-Ⅷ.7 Environmental—Air Quality758

A-Ⅷ.8 Environmental—Water Treatment767

A-Ⅷ.9 Environmental—Soil Treatment771

A-Ⅷ.10 Environmental—Miscellaneous774

Ⅸ.Dynamic Simulation Using DYNAPLUS778

A-Ⅸ.1 Introduction778

A-Ⅸ.2 Procedure for Dynamic Simulation779

A-Ⅸ.3 Control-Loop Definition in DYNAPLUS779

A-Ⅸ.4 Tutorial Exercise:Control of a Binary Distillation Column780

A-Ⅸ.5 Dynamic Simulation of the MCB Separation Process791

Ⅹ.Heuristics for Process Equipment Design795

Compressors and Vacuum Pumps795

Conveyors for Particulate Solids796

Cooling Towers796

Crystallization from Solution797

Disintegration797

Distillation and Gas Absorption798

Drivers and Power Recovery Equipment799

Drying of Solids799

Evaporators800

Extraction,Liquid-Liquid800

Filtration801

Fluidization of Particles with Gases801

Heat Exchangers802

Insulation802

Mixing and Agitation803

Particle Size Enlargement803

Piping804

Pumps804

Reactors804

Refrigeration805

Size Separation of Particles805

Utilities:Common Specifications806

Vessels(Drums)806

Vessels(Pressure)806

Vessels(Storage Tanks)807

Ⅺ.Materials of Construction808

Ⅻ.Generation of Linear Models in Standard Forms810

Author Index815

Subject Index817

热门推荐